Characteristics of Perovskite solar cells with ${\rm TiO_2}$ electron transfer layer coated by cyclic voltammetry method

<u>안준섭</u>, 한은미[†] 전남대학교 (emhan@inu.ac.kr[†])

The characteristics of Perovskite solar cells with the TiO_2 electron transfer layer(ETL) coated by the cyclic voltammetry method were investigated. The three electrodes as a counter, reference, and working electrodes of the cyclic voltammetry method were composed of stainless steel, Ag / AgCl, and FTO glass, respectively. The cyclic voltammetry method was used for coating of the TiO_2 on FTO substrate. The three electrodes were put in aqueous $TiCl_4$ solution and electrochemically coated to 3 to 7 cycles at a scan rate of 0.01 V/s. The schematic of solar cell was FTO glass / TiO_2 ETL / Perovskite(CH $_3$ NH $_3$ PbI $_3$) / sprio-OMeTAD / Ag electrode. The chemical bond of the TiO_2 $2p_{3/2}$ peak was confirmed at 458.8 eV using XPS. The crystal structure of TiO_2 was confirmed as the anatase and rutile structures by XRD. The electrical characteristics of the Perovskite solar cells with electrochemically coated TiO_2 ETL were confirmed by a solar simulator. The photoelectric conversion efficiency of up to 8.4% was obtained in the Perovskite solar cells with TiO_2 ETL coated four times by the cyclic voltammetry method.