Studies on the Zeolite Supported Co Based Hybrid Catalyst for the Application in GTL-FPSO process <u>김현동</u>^{1,2}, 노영수^{1,2}, Ali Alizadeh Eslami^{1,3}, 송현태^{1,3}, Nasim Ghaffari Saeidabad^{1,3}, 이관영², 문 동주^{1,3,†} ¹KIST, ²고려대학교; ³UST (djmoon@kist.re.kr[†]) The Gas to Liquid (GTL) process is one of the most promising technologies for clean fuel production. In the GTL process, Fischer-Tropsch synthesis (FTS) reaction is known as a crucial catalytic process which converts the synthesis gas (CO + H2) to value-added hydrocarbon products. It was reported that the zeolites supported Co based catalysts are desirable candidate for the production of hydrocarbons in a narrow product distribution. In this study, the SAPO-34 was synthesized by the conventional hydrothermal method, other zeolites were used for commercial product, and Co/y-Al2O3 catalyst was prepared by the impregnation method. The physiochemical properties of all prepared catalysts have been characterized by XRD, N2-physisorption, SEM, TEM, H2-TPR and N+B-TPD techniques. The catalytic performance of the physically mixed hybrid catalyst in the Fischer-Tropsch synthesis has been investigated through a fixed bed reactor. The products were analyzed by on-line and off-line GC. The catalytic performance over the prepared catalysts was compared with Co/y-Al2O3 catalyst.