Experimental and Computational Study on the Mechanism of Hydrogen on ${\it MoSe}_2$ Growth and Etching in CVD

<u>황윤정</u>, 박영수, 신내철[†] 인하대학교 (nshin@inha.ac.kr[†])

Molybdenum diselenides have great attractive to electronic, photoelectric devices for its outstanding electric properties. It is necessary to provide large-scale and high crystalline monolayer MoSe₂. Typical synthesis for high quality TMDC is CVD. In CVD, the hydrogen helps growth of MoSe₂ by reduction of MoO₃ precursor, but also it etches grown-MoSe₂ domain.

Here, we have investigated that the existence of MoO_x prevents $MoSe_2$ monolayer to be desorbed by hydrogen etching. Pure $MoSe_2$ monolayer and $MoSe_2$ monolayer with oxide seeds ($MoSe_2+Ox$) are treated under H_2 condition. It is obtained using SEM and AFM analysis that the shape of pure $MoSe_2$ are changed but $MoSe_2+Ox$ are not changed much after H_2 treatment. As we have computationally calculated, H prefers to adsorb to MoO_x than atoms in $MoSe_2$ layer, so that MoO_x hinders etching of $MoSe_2$. It also demonstrates that hydrogen supports the growth of $MoSe_2$ by reducing precursor rather than etching nuclei in nucleation steps. Our research offer insight into the $MoSe_2$ growth mechanism and pave a way to synthesize high quality $MoSe_2$ for electronic devices.