Sorption Enhanced Mixed-Matrix Membranes by Metal-Organic Polyhedra for CO2 Separation

Sohail Muhammad^{1,2}, 안희성³, 윤양노⁴, Shah Syed Fawad Ali^{4,2}, 박영철⁴, 이종석³, 김현욱^{4,2,†}

¹Korean Institute of Energy Research; ²University of Science and Technology; ³서강대학교; ⁴한국에너지기술연구원

(hyunuk@kier.re.kr[†])

Polyethylene glycol (PEG) based thin film composite membranes have high gas permeability, but moderate selectivity limits their application for CO_2 separation. Introducing CO_2 -phillic fillers in selective layer is a promising way to improve the separation properties. In present study, we have fabricated a thin film composite mixed matrix membrane through atom transfer radical polymerization with $[\mathrm{Cu}_{24}(\mathrm{m-bdc})_{24}(\mathrm{PEO})_3(\mathrm{DMF})_{12}]$ (EG_3 -MOP) nanocages as CO_2 -phillic filler molecules. These membranes have been well characterized and subjected to CO_2 separation studies. Due to the excellent compatibility between polymer and MOP, the thin film composite mixed matrix membrane shows enhanced separation properties towards $\mathrm{CO}_2/\mathrm{N}_2/\mathrm{CH}_4$ gas pairs. Particularly, EG_3 -MOP/PEGDMA9 membrane with 5% loading result in 50% and 15% increase selectivity of $\mathrm{CO}_2/\mathrm{N}_2$ and $\mathrm{CO}_2/\mathrm{CH}_4$ respectively, as compared to pristine composite membrane for single gas measurement.