Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over mesoporous LiAlO₂/MO₂ (SnO₂, ZrO₂, CeO₂) catalysts

<u>이정화</u>, 박진서, 이정호, 이정양, 정지용, 김지만[†] 성균관대학교 (iimankim@skku.edu[†])

In this work, transesterification of glycerol with DMC to yield glycerol carbonate (GC) was examined using highly ordered mesoporous $\rm ZrO_2$, $\rm SnO_2$ and $\rm CeO_2$ with high surface areas as supports to load the basic sites LiAlO2 by incipient wetness impregnation method. The synthesized catalysts were characterized using various physicochemical characterization techniques, namely, XRD, $\rm N_2$ -sorption, $\rm CO_2$ -TPD and FT-IR. In the transesterification reaction, $\rm LiAlO_2/CeO_2$ exhibited the best catalytic activity, due to the number of basic sites existed on the surface of catalyst, indicated that the basicity of supported $\rm LiAlO_2$ catalysts was found to be highly dependent on the nature of the supports. The mesoporous $\rm LiAlO_2/CeO_2$ catalysts with different $\rm LiAlO_2$ loadings (5~20) wt.% also prepared and tested for transesterification reaction. The results revealed that the transesterification activity depended on the amount of $\rm LiAlO_2$ loading and calcinations temperature of the catalysts. The effect of reaction conditions such as $\rm DMC/glycerol$ molar ratio, reaction temperature, and catalyst amount were also discussed.