Porous M_6L_3 Type Metallocage for High CO_2 Adsorption Selectivity: A Molecular Simulation Study

<u>김진철</u>, 이정현¹, 이수찬², 이성민², 최원영², 곽상규^{1,†} 울산과학기술원; ¹울산과학기술원 화학공학과; ²울산과학기술원 화학과 (skkwak@unist.ac.kr[†])

The metallocage, UMC-1, has a trigonal bipyramid inter-cage composed of Zr-cationic cluster and organic linker containing SO₂ group suitable for CO₂ adsorption. Based on experimental observation, UMC-1 shows a very high selectivity of 150 for CO₂/N₂. Thus, computational approach using GCMC and DFT calculations were adopted to figure out the cause of high selectivity to CO₂. For accurate GCMC calculation, we modified the forcefield parameters, which could reproduce the experimental CO₂ adsorption isotherm. DFT was used to further optimize the adsorption structures observed at previous step, confirming stable adsorption structure and adsorption energy. Importantly, the site of CO₂ adsorption in UMC-1 is mainly classified into three types. Site 1, which is the most stable site for adsorption, is a place where Cl ion and hydroxyl groups act as Brønsted acidic sites for CO₂, site 2 was a place where CO₂ adsorbed on the pore window and interacted with neighboring SO₂. Lastly, site 3 enabled stable CO₂ adsorption due to the weak interactions of Cp located outside the cage. Based on these findings, it was possible to suggest the cause of the strong adsorption energy of CO₂ in UMC-1.