In Situ Observation of High–Temperature CO_2 Capture Over NaNO_3 Promoted Magnesium Oxide

<u>전형빈</u>, 서정길[†] 명지대학교 (jgseo@mju.ac.kr[†])

NaNO₃ as a promoter can dissociate into Mg^{2+} and O^{2-} in the MgO-based adsorbent and improve the adsorption capacity of CO₂. Hydrotalcite is a skeleton to form MgCO₃, which can further enhance the CO₂ adsorption capacity and stability of MgO. Although the basic principles and mechanisms of CO₂ adsorption of these adsorbents have been found in many studies, much research has not been conducted on the real-time observation of CO₂ adsorption systems. In this study, NaNO₃-MgO-Al₂O₃ adsorbents were prepared by mixing NaNO₃ and Hydrotalcite. In order to clarify the CO₂ adsorption phenomenon, insitu transmission electron microscopy (TEM) was used to observe. In this study, we will discuss in detail the information about the whole adsorption system based on the realtime structural change of NaNO₃-MgO-Al₂O₃ during adsorption and adsorption and regeneration mechanism of adsorbent as well as real-time observation information. This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRT-2016R1C1B2008694).