Cu–Zr binary metal organic frameworks: a heterogeneous catalyst for the chemical fixation of $\rm CO_2$ via cyclic carbonate synthesis

<u>Francis Kurisingal Jintu</u>, 김가형, 최영선¹, 박대원[†] 부산대학교; ¹부산대 (dwpark@pusan.ac.kr[†])

Increasing concerns over global warming have prompted researchers to develop strategies that could minimize the emission of carbon dioxide from industries and power plants as a byproduct. Efficient strategies for the reduction of greenhouse gas emissions, primarily CO_2 , are needed. MOFs are a new and emerging class of porous material that have been dynamically investigated as catalysts for the synthesis of cyclic carbonates owing to its greater CO_2 affinity. In this study, binary metal organic frameworks (MOFs) with HKUST-1 and UiO-66 have been synthesized using solvothermal method. The synthesized binary MOF is investigated for its catalytic efficacy in the synthesis of cyclic carbonates from epoxides and CO_2 . The UiO-66/Cu-BTC binary MOF provides high conversion rates of epoxides to cyclic carbonates with >99% selectivity under solvent-free conditions. The effects of reaction parameters such as catalyst amount, reaction time, CO_2 pressure and reaction temperature were also studied in detail. Finally, a plausible reaction mechanism for binary MOF-catalyzed epoxide-CO₂ cycloaddition reaction is also proposed. Keywords: Binary MOF, CO_2 utilization, epoxide, cyclic carbonates.