Development of high capacity Li⁺ adsorbents from H₂TiO₃/polymer nanofiber composites: Systematic polymer screening, characterization and evaluation

<u>Mengesha Daniel Nigusse</u>, 정욱진, 이성풍[†], Chosel P. Lawagon, Grace M. Nisola Dept. of Energy Science and Technology, 명지대학교 (spleemju2012@gmail.com[†])

Various polymers were systematically screened as matrix for H_2TiO_3 as Li^+ adsorbent. H_2TiO_3 /polymers were electrospun as nanofiber (NF) composites, characterized, and evaluated via response surface methodology with central composite design of Li^+ adsorption experiments. Results identified polyacrylonitrile (PAN) as the most suitable H_2TiO_3 support. Its favorable NF structure and hydrophilicity provided sufficient H_2TiO_3 /PAN-feed interaction, which minimized losses in Li^+ adsorption rate and capacity (q) relative to H_2TiO_3 . Li^+ adsorption in H_2TiO_3 /PAN is Langmuir-type (qmaximum = 72.75 mg g-1), highly selective, and thermodynamically favorable. Stable performance and durability during cycled adsorption/desorption run prove H_2TiO_3 /PAN NF as a highly

effective composite Li^+ adsorbent. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2018R1D1A1B07048007 and 2009–0093816) and by the Ministry of Science and ICT (No. 2017R1A2B2002109).