KAS(Kissinger-Akahira-Sunose) 방법을 이용한 침엽수와 활엽수의 비등은 열분해 동역학 분석

황병아¹, 김영민¹, 이보람¹, 한태욱¹, 박영권², 김승도^{1,*} 한림대학교¹, 서울시립대학교²

Pyrolysis kinetics of soft and hardwoods by using KAS(Kissinger-Akahira-Sunose) method

<u>ByeungA Hwang¹</u>, Young-Min Kim¹, Boram Lee¹, Tae Uk Han¹, Young-Kwon Park², Seungdo Kim^{1,*} Hallym University¹, University of Seoul² (Corresponding Author: sdkim@hallym.ac.kr)

<u>서론</u>

최근 환경 오염, 지구 온난화, 화석연료의 부족현상으로 인해 전 세계적으로 바이오매스 에너지화 기술개발 및 연구가 경쟁적으로 진행되고 있는 상황이다. 바이오매스 자원화 기술 중 열화학적 변환공정인 열분해는 연료 및 화학 원료물질로서의 활용 가치가 있는 기체, 액체, 고체 부산물을 생산할 수 있어 최근 많은 연구가 진행되고 있다. 반면 적용 바이오매스의 특성 및 열분해 반응 조건에 따라 부산물특성이 달라지며, 흡열반응인 열분해 공정 특성상 에너지측면을 고려한 공정 최적화가 매우 중요한 상황이다. 본 연구에서는 국내에서 발생되는 주요 목재류의 열분해 공정 개발을 위한 기초 연구로 Kissinger-Akahira-Sunose(KAS)방법을 통해 열분해 동역학 특성을 알아보고자 한다.

이론

일반적으로 비등온 열분해 반응에서 고체 물질의 동역학 방정식은 식(1)과 같이 표현되고, 반응속도상수인 k(T)는 식 (2)와 같이 온도의 함수인 Arrhenius 방정식(식 (2))로 표현할 수 있다 [1].

$$\beta \frac{du}{dT} = k(T)f(\alpha)$$
(1)
$$k(T) = Aexp\left(-\frac{E_a}{RT}\right)$$
(2)

여기서 E_a 는 활성화에너지(kJ/mol), A는 전지수인자(pre-exponential factor, min⁻¹), $f(\alpha)$ 는 반응모델(Reaction model)이며, T는 절대온도(K), R은 기체상수(8.314 J/mol·K), β 는 승온율(°C/min)로, α 는 전화율로 식(2)와 같이 정의된다.

$$X = \frac{M_o - M}{M_0 - M_\infty} \tag{2}$$

 M_o 는 초기 시료의 질량이며, M은 반응온도에서 시료의 질량, M_{∞} 는 최종 반응 종료 후 남아있는 시료의 질량이다. 이를 기초로 본 연구에서 사용한 KSA 방법은 대표적인 model-free방법으로 최종식은 다음과 같다 [2].

$$\ln\left(\frac{\beta}{T^2}\right) = -\left(\frac{E_a}{R}\right)\frac{1}{T} + \left[\ln\{AR/E\} - \ln g(\alpha)\right]$$
(3)

식(3)의 최종식에서 각 전화율에서의 $\ln\left(\frac{\beta}{T^2}\right)$ 와 $\frac{1}{T}$ 의 관계를 도시하고, 기울기로부터 활성화에너지를 도출할 수 있다.

<u>실험</u> 시료 전처리

본 연구에서는 우리나라 주요 침엽수재인 소나무(*Pinus* (*P.*) densiflora), 잣나무(*P. koraiensis*)와 활엽수재인 상수리나무(*Quercus acutissima*), 백합나무(*Liriodendron tulipifera*)와 추가적으로 잣 껍질(Korean pine nut shell, *KPNS*)을 800μm 이하로 분쇄하여, 105°C에서 4시간 건조 후 사용하였다.

열중량분석(Thermogravimetric Analysis: TGA)

시료의 열적거동 및 동역학 분석을 위해 열중량분석기(Pyris Diamond, Perkin Elmer Co.)를 이용하여 10 mg의 시료를 상온에서 3가지 승온율(10, 20, 40°C/min)으로 800°C까지 가열하였으며, 운반기체로 질소 120ml/min을 사용하였다.

Figure 1. TG and DTG curves of Soft, Hardwood and KPNS (Gray line : TG curve, Black line : DTG curve)

그림 1은 대상시료 5종의 TGA분석을 통한 열중량(TG) 곡선과 미분열중량(Derivative TG, DTG) 곡선을 도시하였다. 대상시료 5종 모두 200℃~400°C 구간에서 열분해 반응이 가장 활발히 일어났으며, 400°C 이후 반응이 천천히 진행됨을 확인하였다. 최종 반응 온도인 800℃ 에서 열분해 고체부산물양은 초기투입 시료량 대비하여 KPNS가 약 30%, 잣나무 약 18%, 나머지 소나무, 상수리나무, 백합나무가 약 16%으로 나타났다. 목질계 바이오매스를 구성하는 섬유소는 cellulose, hemicellulose, lignin으로 알려져 있으며, 그림1의 DTG 곡선은 이 세가지 성분이 중첩되어 나타나는 것으로 초기분해구간인 200~350°C는 hemicellulose가 주로 분해되는 구간으로 상대적으로 많은 양을 함유하고 있는 활엽수재가 침엽수보다 뚜렷한 hemicellulose 분해 곡선을 가짐을 확인할 수 있었다 [3]. 280~400°C 나타나는 것으로 에서 최대반응온도(T_{max})는 cellulose의 분해에 의해 형성된 hemicellulose보다 높은 열적 안정도를 지녀 [4] 활성화에너지 또한 높은 것으로 알려져 있다 [5]. 5종의 대상시료 모두 cellulose 분해구간에서 Tmax가 나타나는 것은 목질계 구성 성분 중에 가장 함량이 가장 많기 때문으로 판단되며, 침엽수재의 T_{max}가 활엽수재보다 높은 것을 확인 할 수 있다. 이러한 차이는 목질계 바이오매스의 회분에 존재하는 무기물질에 의한 촉매효과에 기인한 것으로 판단된다 [6]. 400°C 이상의 온도의 무게감소는 lignin의 분해에 의한 것으로 판단되며, lignin의 경우 200~800°C의 넓은 온도 범위에서 분해가 이루어지며 열분해 후 많은 양의 char를 형성하는 것으로 알려져 있다 [7].

Table 1. Conversion of lignocellulosic biomass obtained by Kissinger method.

(kJ/mol)	Coversion	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	Average
Softwood	P. densiflora	160	163	163	165	165	165	164	162	261	174
	P. koraiensis	165	166	168	169	170	169	167	166	258	178
Hardwood	Q. acutissima	158	164	174	183	184	182	180	175	238	182
	L. tulipifera	155	159	164	169	171	170	170	169	242	174
Nutshell	P. koraiensis	146	160	164	166	169	170	171	207	314	185

Figure 1. Calculated activation energy as a function of conversion.

표 1 과 그림 2 는 KSA 방법을 통해 도출한 각 바이오매스의 전화율에 따른 활성화에너지의 변화를 나타낸 것으로, 모든 목질계 바이오매스는 전화율 0.9 에서 활성화에너지가 급격히 높아짐을 보였으며, 이는 열분해 고체 생성물인 char 의 형성 및 안정화 단계로 볼 수 있다 [8]. lignin 을 가장 많이 함유하고 있는 잣껍질의 경우 전화율 0.7 이후부터 활성화에너지가 상승한 것을 볼 수 있으며, 침엽수재에 비하여 lignin 의 함량이 적은 활엽수재의 높은 전화율 구간에서 활성화에너지의 급격한 변화 정도가 상대적으로 작았다. 침엽수재는 전화율 0.1~0.8 까지 거의 일정한 활성화에너지 값을 가졌으나 상대적으로 hemicellulose 의 함량이 높은 활엽수재는 전화율 0.1 에서 낮은 활성화에너지 값을 가짐을 확인하였다.

<u> 사사</u>

본 연구는 환경부의 환경산업기술개발사업에서 지원받았습니다.

<u> 참고문헌</u>

1. M.E. Browna, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O. Desseyn, C.-R. Li, T. B. Tang, B. Roduit, J. Malek, T. Mitsuhashi, "Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results", *Thermochimica Acta*, **355**, 125-143(2000).

2. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", *Anal. Chem.*, **29**(11), 1702-1706(1957).

3. S. Wang, B. Ru, H. Lin, W. Sun, "Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods", *Fuel*, **150**, 243–251(2015).

4. M. G. Grønli, G. Varhegyi, C. D. Blasi, "Thermogravimetric Analysis and Devolatilization Kinetics of Wood", *Ind. Eng. Chem. Res.*, **41**, 4201-4208(2002).

5. S. Yildiz, E. Gumuskaya, "The effects of thermal modification on crystalline structure of cellulose in soft and hardwood", *Building and Environment*, **42**, 62–67(2007).

6. Eom I.-Y., Kim J.-Y., Kim T.-S., Lee S.-M., Choi D.H., Choi I.-G., Choi J.-W., "Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass", *Bioresource Technology*, **104**, 687–694(2012).

7. S. Wang, K. Wang, Q. Liu, Y. Gu, Z. Luo, K. Cen, T. Fransson, "Comparison of the pyrolysis behavior of lignins from different tree species", *Biotechnology Advances*, **27**, 562–567(2009).

8. Park H. J., Dong J.-I., Jeon J.-K., Park Y.-K., Yoo K,-S, Kim S.-S., Kim J.S., Kim S.D., "Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch", *Chemical Engineering Journal*, **143**, 124–132(2008).