$\begin{array}{l} \mbox{Experimental Verification of Structural Transition and Dissociation Enthalpy Change during CH_4 \\ \mbox{Recovery Induced by CO}_2 \ \mbox{Injection into CH}_4 + \ \mbox{C}_3 \mbox{H}_8 \ \mbox{hydrate} \end{array}$

The CH₄-CO₂ replacement occurring in natural gas hydrates has attracted significant attention due to its double function for CH₄ recovery and CO₂ sequestration. In this study, CO₂ was injected into the CH₄ + C₃H₈ hydrate to identify the influence of the replacement on the hydrate structure and dissociation enthalpy (ΔH_d). The shift of the three-phase (H-L_W-V) equilibrium line after CO₂ injection indicated that a significant portion of CH₄ and C₃H₈ in the initial hydrate was replaced with CO₂. The extent of the replacement was measured using a gas chromatograph, and was gradually increased as the driving force (ΔP_{CO2}) increased. The NMR confirmed that the CH₄ + C₃H₈ hydrate is structure II and no structural transition was observed after the replacement. The influence of the replacement on ΔH_d was examined using a high-pressure micro-differential scanning calorimeter (HP µ-DSC). During the replacement, there was no significant heat flow associated with the hydrate dissociation or formation. This study revealed that the CH₄ recovery induced by CO₂ injection into CH₄ + C₃H₈ hydrate could be achieved in a sII isostructural system without significant hydrate cage destruction.