Biological enhancement of CO₂ mass transfer in microalgal reactors

<u>오승환</u>, 허성민, 이재형[†] 한국과학기술원 (jayhlee@kaist.ac.kr[†])

CO₂, which is one of the essential nutrinets for microalgae, takes in charge of a large portion in the biomass production cost. Thus, accurate calculation of CO₂ concentration in microalgal reactors is important to develop optimal CO₂ supplement strategy which maximizes algal growth rate while minimizing CO₂ leakage. However, conventional transfer models for CO₂ concentration estimation are inaccurate as they underestimate CO₂ mass transfer rate. Therefore, estimated CO₂ concentration is typically lower than measured concentration. In this research, biological enhancement, which is defined as the enhancement of mass transfer in the presence of the biological micro-organism, is incorporated into the conventional CO₂ transfer model to estimate accurate CO₂ mass transfer rate. By comparison with the conventional model results and measured data, impact of biological enhancement on CO₂ supplement strategy is evaluated.