Ce/Zr ratio effect in Pd supported catalyst for sulfur resistance

<u>유영석</u>, 이재하, 이효경¹, 정진우¹, 김창환¹, 김도희[†] 서울대학교; ¹현대자동차 (dohkim@snu.ac.kr[†])

To satisfy emission standard, diesel engine has adopted diesel oxidation catalyst (DOC) which converts unburned CO and HCs to CO_2 and H_2O . Improvement of catalytic performance at low temperature is essentially required. In addition to the thermal stability, the sulfur resistance is a challenging issue for the proper operation of catalyst. Pd plays a key role as an active site for oxidation. Moreover, it is known that Pd has excellent synergistic effect on oxidation when CeO_2 is used as support. CeO_2 support is able to provide high dispersion of Pd and, moreover, to promote the oxidation activity due to its characteristic oxygen storage capacity (OSC). However, CeO_2 is prone to be deactivated by hydrothermal treatment. In addition, it is reported that SO_2 easily degrades catalytic property of CeO_2 . There have been a number of studies to maintain CeO_2 property against thermal deterioration and sulfur poisoning. Among the various solid solution materials, $(Ce-Zr)O_2$ presents high thermal stability and OSC ability. This study aims at interpreting the effect of ZrO_2 in $Pd/(Ce-Zr)O_2$ catalysts with various Ce/Zr ratios compared to Pd/CeO_2 , especially focusing on the effect of sulfur poisoning & regeneration treatment on the catalyst.