945

Greener Method to Control Shape and Phase of Iron Pyrite (FeS₂)

<u>트린탄기에우</u>, 트롱윈탐윈, 팜하우탄비엣, 김창득¹, 박진호[†] 영남대학교; ¹경북대학교 (chpark@ynu.ac.kr[†])

Pyrite iron disulfide (FeS₂) is a very green and promising material for photovoltaic applications because of its earth abundance, and non – toxicity. A greener method was applied to synthesize pyrite with phase purity and high quality nanocrystals (NCs) by using non-toxic solvent as trioctylamine (TOA) together with octadodecylamine (ODA) and oleylamine (OLA). It was observed when increasing the ratios of ODA/TOA, the phase of iron sulfide transformed from makinawite (FeS) through gregite (Fe₃S₄) to pyrite (FeS₂). So, Fe₃S₄ was considered as intermediate phase in the formation of FeS2 phase in the reaction between FeS phase and excess sulfur. The small cubic and nano-denrite iron pyrite NCs with the size of 50 nm and 20 nm, respectively, were successfully controlled by using different solvents to dissolve sulfur element. A mechanism involving the concentration of sulfur source and the aggregation are proposed to explain the shape change observed.