Implications of the CH₄ – Flue Gas Replacement in the Structure H Hydrate System as Revealed by ¹³C NMR and a High Pressure Micro–Differential Scanning Calorimeter

The CH₄-flue gas replacement in naturally occurring gas hydrates has attracted significant attention due to its potential as a method of exploitation of clean energy and sequestration of CO₂. In this study, 2,2-dimethylbutane (Neohexane, NH) was used as a sH hydrate former, and the compositions of flue gas were CO₂ (10%) + N₂ (90%) and CO₂ (20%) + N₂ (80%). The shifts of the quaternary phase (H-L_W-L_H-V) equilibrium of initial and replaced hydrates verified that flue gas was successfully replaced with the CH₄ in the sH hydrates. The ¹³C NMR confirmed that the CH₄-flue gas replacement reaction proceeded without structural transition and the CO₂ molecules also occupied cages of structure H hydrates. A high pressure micro-differential scanning calorimeter (HP μ -DSC) provided reliable hydrate stability conditions and heat of dissociation values in the porous silica gels after the replacement, which confirmed that CH₄ in the hydrates was successfully replaced with flue gas. A heat flow change associated with the dissociation and formation of hydrates was not noticeable during the CH₄ – flue gas replacement in sH hydrates.