Paenibacillus polymyxa Seo3-1의 섬유소 분해활성 효소생산 및 활성 최적화

<u>최인후</u>, 윤하얀, 윤영미, 안기홍, 안종웅, 문윤호, 차영록, 유정단, 이지은, 이경보 농촌진흥청

(mi3710@korea.kr^t)

본 연구에서는 국내 간척지(서산, 부안, 해남, 군산 등) 토양 및 식물체로부터 섬유소 분해활성 균주를 탐색하여 활성이 우수한 Paenibacillus polymyxa Seo3-1을 분리, 동정하여 본 균이 생산한 효소를 초본계 바이오매스의 당화에 이용하고자 하였다. 또한 본 균주의 효소생산 최적화를 위해 배양배지의 질소원과 탄소원, 초기 $pH(pH 3\sim10)$, 배양온도($20\sim50$ °C), 배양시간($2\sim72$ h) 등의 영향을 알아보았다. 그리고 효소의 기질-효소반응 최적화를 위해 반응온도($30\sim90$ °C)와 $pH(pH 4\sim10)$ 의 영향도 알아보았다. Cellulase 활성은 DNS 분석법을 이용하여 측정하였다. P. polymyxa Seo3-1은 탄소원으로 CMC(Carboxymethyl Cellulose), 질소원 Peptone, 배지초기 pH7, 배양온도 40°C, 배양시간 24 h에서 가장 높은 Cellulase 활성을 보였다. 최적 배양조건에서 P. polymyxa Seo3-1이 생산한 효소는 한외여과장치(Sartorius Slice 200, 10 kD MWCO)로 10배 농축 후, 단수수비개스를 당화하는데 이용되었다. HPLC(High Performance Liquid Chromatography, Waters) 분석장치를 이용하여 단수수비개스의 섬유소(0.1 g)는 P. polymyxa Seo3-1이 생산한 효소에 의해 glucose(2.75 ± 0.03 mg), xylose 2.79 ± 0.08 mg), arabinose(2.79 ± 0.08 mg