Synthesis and characterization of graphene-MnO2 composites by microwave irradiation

<u>장석현</u>, 김도현[†], 정재민¹ KAIST; ¹한국과학기술원 (dohyun.kim@kaist.edu[†])

We present a rapid method to synthesize graphene- MnO_2 composites through deposition of nanoscale MnO_2 on the surface of graphene under microwave irradiation. Fabricated graphene- MnO_2 hybrid material was investigated for electrochemical behavior. A thin layer of birnessite-type MnO_2 , coated around graphene was confirmed by scanning electron microscopy (SEM), transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). This thin layer of the oxide enhanced capacitance compared to bare graphene. Other electrochemical behavior shows better performance due to the synergetic effect of graphene and MnO_2 . The improved electrochemical performance may be attributed to the increased electrode conductivity in the presence of graphene substrate, the increased effective interfacial area of thin MnO_2 with electrolyte.