열중량분석기에서 매체순환식 가스연소를 위한 Ni 계열 산소전달입자의 반응특성

<u>박지혜</u>, 백정훈, 정정민, 임효빈, 변창기, 백점인¹, 류호정², 이광복^{3,†} 충남대학교 에너지과학기술대학원; ¹한국전력연구원; ²한국에너지기술연구원; ³충남대학교 화학공학교육과 (cosy32@cnu.ac.kr[†])

이산화탄소 포집 기술에서 연소중(oxy-combustion) 기술 중 하나인 매체순환식 가스연소 (CLC, Chemical Looping Combustion) 기술은 고농도의 이산화탄소를 별도의 분리설비 없이 원천적으로 분리할 수 있다. 매체순환식 가스연소 시스템은 연료 반응기와 공기 반응기의두 개의 반응기로 이루어져 있다. 산소전달입자는 두 반응기 사이를 순환하며, 연료 반응기에서 연료 가스에 의해 환원되고 공기 반응기에서 산소에 의해 산화된다. 연료 반응기에서 생성되는 기체는 이산화탄소와 수증기뿐이므로 수증기를 응축하면 고농도의 이산화탄소를 얻을 수 있다. 본 연구에서는 한국전력연구원(KEPCO)에서 생산한 Ni 계열 산소전달입자에 대해서 열중량분석기(TGA)를 이용하여 연료가스 농도, 유량 및 온도에 따른 무게변화를 측정하고 반응특성을 해석하였다. 열중량분석 실험은 연료가스 농도 CH_4 5~30%, CO_2 bal., 유량 50~150 sccm 및 온도 $\mathrm{700}$ ~900 C 범위에서 수행되었다.