Anti-sintering effect of La on Ni/MgAl₂O₄ catalysts for the combined H₂O and CO₂ reforming of coke oven gas

<u>박지은</u>^{1,2}, 구기영¹, 정운호¹, 노현석², 윤왕래^{1,*} ¹한국에너지기술연구원 수소연구실; ²연세대학교 환경공학부 (wlyoon@kier.re.kr^{*})

Coke Oven Gas(COG)는 코크생산공정의 부생가스로서,H₂(57%),CH₄(27%),N₂(4%),CO (9%),CO₂(3%)로 구성되어있다. CO G의 수증기/이산화탄소 복합개질반응을 통해 생성된 H2/CO합성가스를 직접환원철의 환원제로 활용하게 되면,고로에서 철광석 환원을 위해 필요 한 코크를 대체함으로써 CO2발생량이 줄고, 회수한CO2를 개질반응의 반응물로 재활용하기 때문에 온실가스 저감을 위한 대응기술이 될 수 있다. 일반적으로,개질반응에 쓰이는 Ni계 촉 매는 탄소침적 및 고온반응에서 입자소결에 의해 촉매가 비활성화되는 문제점이 있다. 그러 나 수소가 많은 분위기에서는 탄소침적이 억제되기 때문에,우선적으로 높은 활성 및 내소결 특성을 가진 Ni 촉매 개발이 요구된다. 따라서, 본 연구에서는 10%Ni/MgAl₂O₄ 촉매의 소결저 항성 강화를 위한 조촉매로 La을 첨가하여 영향을 살펴보고자 하였다. 촉매는 La 함량을 0~5%로 조절하여 동시함침법으로 제조하였다. 제조된 촉매의 비표면적,NiO 결정크기,분산 도,환원특성을 살펴보기 위해 BET,XRD,H2-Chemisorption,TPR 분석을 수행하였다. 복합개 질반응은 $CH_4:H_2O:CO_2:H_2=1:1.2:0.4:2,$ GHSV=1,120,000 ml/h-g_{cat} 반응온도 700°C~900°C조건에서 수행하였다.촉매의 내소결특성을 살펴보기 위하여 900°C, 100h 열처 리 후에,Ni 입자크기의 변화를 XRD,TEM으로 관찰하였다.