Morphology dependent phase transformation of platelet and rod-like y-Al₂O₃

<u>이재경</u>, 오동건, 전힘찬, 곽자훈* 울산과학기술대학교 (jhkwak@unist.ac.kr*)

In this work, we investigated the phase transformation of platelet and rod γ -Al₂O₃ by XRD, BET, HR-TEM, solid state ²⁷Al-NMR and ethanol TPD after sequential annealing in air up to 1100°C. After annealing at 1100°C, commercial γ -Al₂O₃ transformed to α -Al₂O₃ with drastic surface area reduction (initially 200m²/g to 25m²/g). However, platelet γ -Al₂O₃ transformed to θ -Al₂O₃ not α -Al₂O₃ and sustained much higher surface area (60m²/g) than commercial ones after same treatment. Rod γ -Al₂O₃ phase transformed to δ -Al₂O₃. Interestingly, platelet and rod which showed same XRD transformed to different phases. These results strongly suggest that the phase transformation can be affected also by secondary morphologies. Ethanol TPD from platelet and rod after 1100°C annealing, showed significantly different desorption profiles. These different phase transformations were also supported by solid ²⁷Al-NMR. Commercial alumina shows mostly octahedral Al³+ ions after 1100°C annealing, but others show even higher intensities of tetrahedral Al³+ ions than initial γ -Al₂O₃. Morphological changes were also confirmed by TEM. These results consistently suggest the morphology dependent phase transformations of γ -Al₂O₃ and thermal stability of platelet and rod.