PVDF structure의 phase transition을 이용한 압전, 강유전 소자 제작

<u>오은석</u>, 서동완, 추혁성, 임상우* 연세대학교

(swlim@yonsei.ac.kr*)

Poly(vinylidene fluoride)(PVDF)는 고분자 재료 중 가장 큰 유전율을 가지며 뛰어난 압전 특성을 나타내어, 차세대 energy harvestor 및 sensor로 주목 받고 있다. PVDF는 α , β , γ , δ 4가지의 polymorphs를 가지고 있고 일반적으로 가장 안정한 α phase로 존재한다. 그러나, α phase는 무극성이기 때문에 압전 및 강유전 소자로 이용하기 위하여 phase transition이 필요하다. β phase는 압전성을 띄면서 가장 큰 dipole moment를 가져 압전소자로 이용할 수 있고, δ phase는 dipole moment가 작으나 강유전성을 가지고 있어 강유전소자로 이용할 수 있다. 본 연구에서는 PVDF structure를 제작하기 위하여 solution method를 이용하였다. 또한, α phase를 β 및 δ phase로 변환하기 위하여 제작 공정 제어와 electrical poling을 진행하였고 PVDF의 농도에 따른 output voltage 및 current density의 측정은 pushing tester와 oscilloscope를 이용하였다. Electrical poling 시 소자의 두께를 조절하여 β 및 δ phase PVDF 소자의 제작이 가능하였고, 각 phase에 따른 pushing test 결과 output voltage 및 current density가 각각 β -PVDF 소자는 δ 0.18 V, δ 1.1 nA/cm2을 나타내었고 δ -PVDF 소자는 δ 2.2 확인하였다.