Hydrogen evolution catalysis on amorphous MoS₂/carbon fiber paper grown by hydrothermal Method

 $\frac{\text{Ranjith Bose}}{; 1}, \qquad \text{Suresh Kannan Balasingam}^1, \qquad \text{, Zhenyu Jin,} \qquad \overset{1}{; 1}$

(ysmin@konkuk.ac.kr^{*})

Transition metal dichalcogenides (TMD s), particularly molybdenum disulfide (MoS₂), have been identified as excellent hydrogen evolution reaction (HER) catalyst for the water splitting reaction. In this work, we directly grow anorphous MoS₂ thin films on plasma pre-treated carbon fiber paper (PP-CFP) and electrochemically pre-treated carbon fiber paper (EP-CFP) to prepare catalyst for the HER. The amorphous films are synthesized at 200 °C by simple hydrothermal method. The MoS₂/PP-CFP and MoS₂/EP-CFP show more excellent cathodic current density of the HER than the crystalline MoS₂ catalysts. In addition, Tafel slopes of 48 and 52 mV per decade are measured for MoS₂/EP-CFP and MoS₂/PP-CFP, respectively, which suggests the Volmer-Heyrovsky mechanism of hydrogen evolution. Furthermore both samples exhibit so excellent stability that cathodic current density slightly decreases after 1000 cycles of the HER experiment.