890

Room-temperature CO oxidation over highly ordered mesoporous RuO₂ catalyst

<u>김명실</u>, 박중남, 손정국, 황아론, 김지만* 성균관대학교 (jimankim@skku.edu*)

Highly ordered mesoporous ruthenium dioxide (meso-RuO₂) has been successfully synthesized by controlling the surface hydrophobicity of mesoporous silica template (KIT-6) via a nano-replication method. The meso-RuO₂ material, thus obtained, exhibits a well-defined mesostructure and high surface area (131 m² g⁻¹). The physicochemical properties of the meso-RuO₂ material are characterized by electron microscopy, X-ray diffraction, N₂ adsorption-desorption, temperature programmed techniques, and X-ray photoelectron spectroscopy. Pretreatment of the meso-RuO₂ catalyst under different gas environments (O₂, H₂ and CO) strongly affects the catalytic activity towards CO oxidation. The meso-RuO₂, pretreated by O₂ flowing at 200 °C, exhibited excellent catalytic activity for CO oxidation, 100% CO conversion with long-term stability at room temperature, whereas the meso-RuO₂ catalysts with pretreatment under other conditions are not very active at room temperature. It is found that the surface oxygen species, generated on the meso-RuO₂ during O₂ pretreatment at 200 °C, provide CO oxidation activity at room temperature.