CO₂/CH₄ separation properties of alicyclic dianhydride based soluble copolyimide membranes

<u>박채영</u>^{1,2}, 장은총¹, 박희문¹, 장봉준¹, 김정훈^{1,3,*} ¹한국화학연구원; ²충남대학교; ³과학기술연합대학원대학교 (jhoonkim@krict.re.kr*)

 ${
m CH_4}$ is emitted from landfills or during anaerobic digestion of activated sludge, food wastes and animal wastes. ${
m CH_4}$ has 21 times larger global warming potential than ${
m CO_2}$ and has the 2nd largest contribution to global warming. The upgrading of ${
m CH_4}$ is very important in terms of both prevention of global warming and security of renewable energy for vehicle fuels or gas grid injection. Biogas can be efficiently upgraded by removing ${
m CO_2}$ and ${
m H_2S}$ via membrane process. The performance of membrane process depends mainly upon ${
m CO_2/CH_4}$ selectivity and ${
m CO_2}$ permeability of membrane materials.

The objective of this study is to develop good membrane materials with high CO2 permeability and high $\rm CO_2/CH_4$ selectivity. We have developed novel alicyclic dianhydride-diamine (DOCDA-ODA) based copolyimides with different 20mol% of dianhydrides (6FDA, BPDA and BTDA) using m-cresol as a solvent, respectively. All synthesized copolyimides were characterized by NMR, FT-IR. The copolyimide gas permeability coefficients(P) and ideal selectivities for N2, O2, CO2 and CH4 were measured with a time-lag apparatus.