Interconnected and mesoporous TiO₂ films with bimodal porosity using surface modification of nanoparticles by graft polymerization and sol-gel process

<u>김동준</u>, 전하림, 정예은, 허성연, 김종학* 연세대학교 (jonghak@yonsei.ac.kr*)

The combined process of graft/crosslink polymerization and sol–gel process has been applied into 100 nm–sized TiO_2 nanoparticles with an anatase/rutile mixed phase. To be specific, the surface of TiO_2 nanoparticles were modified first by grafted hydroxyethyl methacrylate (HEMA) and sulfosuccinic acid (SA) and further polymerization was followed to make poly(hydroxyethyl methacrylate) (PHEMA). In the next sol–gel process, the TiO_2 precursor, titanium(IV) isopropoxide (TTIP) was coordinated with PHEMA polymer domain and generated 3-dimensionally interconnected TiO_2 films with hierarchical pores. In particular, four different TiO_2 photoelectrodes(labeled such aspristine TiO_2 , TiO_2 /TTIP, TiO_2 -HEMA/TTIP and TiO_2 -PHEMA/TTIP) were prepared for dye sensitized solar cells(DSSC). The energy conversion efficiency of a polymer electrolyte (PEGDME/SiO₂/MPII/I₂)DSSC fabricated with TiO_2 -PHEMA/TTIP photoelectrode reached 3.5% at 100 mW cm⁻², which was much higher than those of pristine TiO_2 (1.4%), TiO_2 /TTIP (1.6%) and TiO_2 -HEMA/TTIP (2.0%) photoelectrodes.