Adsorption and photocatalytic degradation of humic acid in aqueous solution using mesoporous ${ m TiO}_2$ supported on spherical activated carbon

<u>유지원</u>^{1,2}, 백미화², 홍지숙², 이창용¹, 서정권^{2,*} ¹공주대학교; ²한국화학연구원 (iksuh@krict.re.kr*)

Mesoporous TiO_2 supported on spherical activated carbon (meso- TiO_2 /SAC) which possesses adsorption capacity with photocatalytic activity was prepared by ion-exchange method and heat-treatment process. Humic acid (HA) selected as a target substance can contaminant groundwater and surface water by complexation with a variety of heavy metal. To investigate the feasibility of applying meso- TiO_2 /SAC for removal of HA from aqueous solution, batch adsorption and photocatalysis experiments were carried out in a fluidized bed photoreactor. The results show that the rate of adsorption reaction of HA by meso- TiO_2 /SAC followed the pseudo second-order kinetics and the adsorption isotherm fitted well to the Freundlich and Langmuir isotherm models. In photocatalysis, it was discovered that about 80% TOC was removed under experimental conditions for catalyst dosage of 9 g/L and an initial HA concentration of 20 mg/L. Several reuse of meso- TiO_2 /SAC exhibited relatively high photocatalytic stability and TiO_2 did not leach into the solution for long-term.