
Theories and Applications of Chem. Eng., 2011, Vol. 17, No. 1 

화학공학의 이론과 응용 제 17 권 제 1 호 2011 년 

 175

 Closed-loop approach for PI/PID controller tuning from setpoint experiment 

 

Mohammad Shamsuzzoha
1
, Mudassir Hasan, Moonyong Lee* 

1
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Daharan,  

School of Chemical Engineering and Technology, Yeungnam University 

(mynlee@ynu.ac.kr
*
) 

 

Introduction 

The proportional, integral, and derivative (PID) controller is widely used in the process industries due 

to its simplicity, robustness and wide ranges of applicability in the regulatory control layer. One 

survey of Desborough and Miller (2002) indicates that more than 97% of regulatory controllers utilise 

the PID algorithm.  

There are two approaches for the controller tuning and one may use open-loop or closed-loop plant 

tests. Most tuning approaches are based on open-loop plant information; typically the plant’s gain (k), 

time constant (τ) and time delay (θ). The other alternative method is Ziegler-Nichols (1942) closed-

loop experiments, which requires very little information about the process. However, there are several 

disadvantages. First, the system needs to be brought its limit of instability and a number of trials may 

be needed to bring the system to this point, and also it does not work well on all processes. A third 

disadvantage of the Ziegler-Nichols (1942) method is that it can only be used on processes for which 

the phase lag exceeds -180 degrees at high frequencies. For example, it does not work on a simple 

second-order process. Recently, Shamsuzzoha and Skogestad (2010) have developed new procedure 

for PI/PID tuning method in closed-loop mode which satisfies both the performance and robustness 

criteria. They require only one closed-loop step test to obtain PI controller setting.  

Therefore, it is important to have alternative tuning method based on the closed-loop experiment 

which gives better performance and robustness. In this method it is simple to obtain the PID tuning 

parameters in one step for improved performance while satisfying the other criteria during the closed-

loop experiment like reduces the number of trails, and works for a wide range of processes.  

IMC-PID Controller Tuning Rule 

In process control, a first-order process with time delay is a common representation of the process 

dynamics: 
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Most processes in the chemical industries can be satisfactorily controlled using a PID controller:  
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The IMC-PID tuning rule for the first order process with time delay (in present study recommended 

value of τc= θ) is given as (Seborg et al. 2004).  
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Note: To improve the load disturbance response we recommended to reduce the integral time, as 

suggested by Skogestad (2003; modifying the integral time
I cτ =4(τ +θ) ).  

Closed-Loop Experiment 

This section is devoted for the development of the PID controller based on the closed-loop data which 

resembles Eq.(3). The proposed procedure is as follows (Shamsuzzoha and Skogestad, 2010): 

1. Switch the controller to P-only mode (for example, increase the integral time τI to its maximum 

value or set the integral gain KI to zero).  

2. Make a setpoint change that gives an overshoot between 0.10 (10%) and 0.60 (60%); about 0.30 

(30%) is a good value. Record the controller gain Kc0 used in the experiment.  
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3. From the closed-loop setpoint response experiment, obtain the following values (see Fig. 1): 

• Fractional overshoot, (∆yp - ∆y∞) /∆y∞ 

• Time from setpoint change to reach first peak output (overshoot), tp  

• Relative steady state output change, b = ∆y∞/∆ys. 

Here the output variable changes are ∆ys: Setpoint change, ∆yp: Peak output change (at time tp), ∆y∞: 

Steady-state output change after setpoint step test. 

To find ∆y∞ one needs to wait for the response to settle, which may take some time if the overshoot is 

relatively large (typically, 0.3 or larger). In such cases, one may stop the experiment when the setpoint 

response reaches its first minimum (∆yu) and record the corresponding output, ∆y∞ = 0.45(∆yp + ∆yu).                  

The detail for obtaining ∆y∞ is given in Shamsuzzoha and Skogestad (2010).  

 

Correlation between Setpoint Response and the PID-Settings 

The goal is to derive a correlation between the setpoint response data (Fig. 1) and the proposed PID 

settings in Eq. (3). For this purpose, we considered 15 first-order with delay models g(s)=ke
-θs
/(τs+1) 

that cover a wide range of processes; from delay-dominant to lag-dominant (integrating):  

τ/θ=0.1,0.2,0.4,0.8,1.0,1.5,2.0,2.5,3.0,7.5,10.0,20.0,50.0,100 

Since we can always scale time with respect to the time delay (θ) and the closed-loop response 

depends on the product of the process and controller gains (kKc) we have without loss of generality 

used in all simulations k=1 and θ=1. 
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Fig. 1. Closed-loop step setpoint response with P-only control. Fig. 2. Relationship between P-

controller gain kKc0 used in setpoint experiment.  

For each of the 15 process models (values of τ/θ), we obtained the PID-settings using Eq. (3) with the 

choice τc=θ. Furthermore, for each of the 15 processes we generated 6 closed-loop step setpoint 

responses using P-controllers that give different fractional overshoots. 

Overshoot= 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60 

In total, we then have 90 setpoint responses, and for each of these we record four data: the P-controller 

gain Kc0 used in the experiment, the fractional overshoot, the time to reach the overshoot (tp), and the 

relative steady-state change, b = ∆y∞/∆ys.  

Controller gain (Kc). As illustrated in Fig. 2, where we plot kKc as a function of kKc0 for the 90 

setpoint experiments, the ratio Kc/Kc0 is approximately constant for a fixed value of the overshoot, 

independent of the value of τ/θ. Thus, we can write 

c

c0

K
=A

K
                                                                                                                                                    (4) 

where the ratio A is a function of the overshoot only. In Fig. 3 we plot the value of A, which is 

obtained as the best fit of the slopes of the lines in Fig. 2, as a function of the overshoot. The following 

equation (solid line in Fig. 3) fits the data in Fig. 2 well and given as:  

A=[1.55(overshoot)
2
 -2.159 (overshoot)+1.35]                                                                                     (5) 
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Fig. 3. Variation of A with overshoot using data (slopes) from Fig. 2.; Fig. 4. Ratio between delay and 

setpoint overshoot peak time (θ/tp) for P-only control of first-order with delay processes. 

 

Integral time (τI). The proposed method in Eq. (3b) uses the minimum of two values, so it seems 

reasonable to look for a similar relationship from closed-loop experiment.  

(1) Process with relatively large delay: This case arise when processes have a relatively large delay 

i.e., τ/θ<8. From the rearrangement of Eq.(3a) we get 
I 1.5 ckKτ θ=  and we also need the value of the 

process gain k, and to this effect write   

kKc= kKc0.Kc/ Kc0                                                                                                                                   (6) 

Here, the value of the loop gain kKc0 for the P-control setpoint experiment is given from the value of 

b: 

c0

b
kK =

(1-b)

                                                                                                                                                (7) 

Substituting kKc from Eq. (7) and Kc/ Kc0=A into Eq. (4) and given as 

I

b
1.5

(1-b)
τ θ=                                                                                                                                            (8) 

To prove this, the closed-loop setpoint response is ∆y/∆ys = gc/(1+gc) and with a P-controller with 

gain Kc0, the steady-state value is ∆y∞/∆ys = kKc0/(1+kKc0)=b and we derive Eq.(8). The absolute value 

is included to avoid problems if b>1, as may occur for an unstable process or because of inaccurate 

data.  

For processes with a relatively large time delay (τ/θ<8), the ratio θ/tp varies between 0.27, see Fig.4 

(for τ/θ= 8 with overshoot=0.1) and 0.5 (for τ/θ=0.1 with all overshoots). For the intermediate 

overshoot of 0.3, the ratio θ/tp varies between 0.32 and 0.50. A conservative choice would be to use 

θ=0.5tp because a large value increases the integral time. However, to improve performance for 

processes with smaller time delays, we propose to use θ=0.43tp which is only 14% lower than 0.50 (the 

worst case). In summary, we have for process with a relatively large time delay:  

0.645
(1- )

I p

b
A t
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τ =                                                                                                                                     (9)  

(2) Process with relatively small delay. Both the proposed and Shamsuzzoha and Skogestad (2010) 

method have same integral action for the lag-dominant process(τ/θ>8) and given as: 

τI2=2.44tp                                                                                                                                               (10) 

Conclusion. Therefore, the integral time τI is the minimum of the above two values:  

I pτ =min 0.645 , 2.44t
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                                                                                                                     (11) 

Derivative action (τD). The derivative action is recommended in the proposed study for the process 

having τ/θ≥1, and the corresponding closed-loop criteria for the derivative action is  

( )
b

A 1
1-b

≥
                                                                                                                                                (12)                     

Case I: For approximately integrating process (τ>> θ), where the closed-loop time delay θ= 0.305tp. 

The derivative time τD1 in Eq. (3c) can be approximated as  
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Case II: The processes with a relatively large delay the derivative action is recommended only if τ/θ ≥ 

θ. Assuming when τ=θ the τD2 is given from Eq. (3c) as 
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Summary: τD1 and τD2 are approximately same and the conservative choice for the selection of τD is  
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Simulation 

The proposed closed-loop tuning method has been tested on broad class of the processes and it 

provides the acceptable controller setting. To show the effectiveness of the proposed method one case 

has been discussed as representative examples i.e., higher order integrating process.  

Example 1  ( )
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The simulation has been conducted for three different overshoot (around 0.1, 0.3 and 0.6) and are 

compared with the recently reported method of Shamsuzzoha and Skogestad (2010).  

Figure 5 has obtained by introducing a unit step change in the set-point at t = 0 and an unit step change 

of load disturbance at t = 100 at plant input. It is clear from Fig.5 that the proposed method gives better 

closed-loop response. There are significant performance improvements for the disturbance rejection 

while maintaining setpoint performance. The overshoot around 0.1 typically gives slower and more 

robust PID-settings, whereas a large overshoot around 0.6 gives fast PID-settings with less robustness.  
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Fig. 5. Responses for Example 1  

 Conclusion 
A simple approach has been developed for PID 

controller tuning from the closed-loop setpoint 

step test using a P-controller with gain Kc0. The 

tuning method is given as: Overshoot= (∆yp - 

∆y∞) /∆y∞, Time to reach overshoot (first peak)= 

tp, Relative steady state output change, b = 

∆y∞/∆ys. If one does not want to wait for the 

system to reach steady state, use the estimate ∆y∞ 

= 0.45(∆yp + ∆yu). 

c c0K =K A , where A=[1.55(overshoot)
2
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The proposed method works well for a wide 

variety of the processes including the integrating, 

high-order, inverse response, unstable and 

oscillating process.  
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