H-L_w-V Equilibrium Measurements for Ternary CH₄-N₂-CO₂ Mixed Hydrate System

<u>권민철</u>, 이재형¹, 이 흔* KAIST; ¹한국지질자원연구원 (hlee@kaist.ac.kr*)

The vast natural gas hydrate deposits on the deep seafloor have attracted the attention of many researchers in energy and environmental fields because of recovering a huge amount of CH_4 stored in the hydrate-bearing sediments. Separately, CO_2 hydrates in deep ocean CO_2 storage are also considered. To attain both of these things at the same time, the swapping mechanism, the replacement of CH_4 hydrate with the sequestration of flue gas N_2+CO_2 , has investigated into the actual application in recent years. However, the phase equilibrium data of ternary $CH_4-N_2-CO_2$ mixed hydrate is essential to the swapping mechanism, but not yet available. In the present study, phase equilibrium measurements were carried out for ternary $CH_4-N_2-CO_2$ mixed hydrate system and the feed gas molar ratio of N_2 to CO_2 of 8:2 will be fixed according to conventional flue gas type of power plant. This hydrate system cannot form structure II at all composition, because the binary mixed N_2-CO_2 hydrate was known to form structure I at compositions above 0.2 mole fraction of CO_2 . Gas chromatography would be introduced to hydrate phase compositions of the ternary mixed hydrates measured at the corresponding vapor phase compositions.