Measurement and Prediction of Solubility of CO_2 in the Ionic Liquids [bmim][PF₆], [bmim] [BF₄], and [bmim][Tf₂N]

Among their many unique properties, the non-volatility of ionic liquids has opened up a possibility to replace conventional solvents with them in CO_2 absorption processes. An enormous number of experiments have been carried out to measure the solubility of CO_2 in over 200 different ionic liquids. [bmim][PF₆], [bmim][BF₄], and [bmim][Tf₂N] are three well-known examples of ILs studied.

In this work, these ILs have been selected to evaluate a method which predicts their capacity to dissolve CO_2 at given temperatures. The solubility of CO_2 in these ILs was predicted based on their structures using a quantum mechanical method, namely the COSMO-RS approach. The Henry's law constants calculated using the COSMOthermX program for the above ILs were correlated with the energy parameters in group-contribution non-random lattice fluid equation of state (GC-NLF EoS). These correlations were used to predict the solubility of CO_2 in each ionic liquid at temperatures 278 K, 288 K, and 298 K. Then the results were compared with experimental solubility data obtained using a closed phase equilibrium cell in water bath.

화학공학의 이론과 응용 제16권 제2호 2010년