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I. INTRODUCTION 

In most engineering applications, one aims to solve physical problems by converting it into a deterministic mathematical 

model. This is a rough approximation of reality, as many physical input parameters describing the problem are fixed through this 

conversion. In reality, however, these parameters exhibit randomness with definite influences over behavior of the solution. 

Accordingly, it becomes increasingly important to quantify uncertainties associated with model predictions. Because of the 

“uncertain” nature of the uncertainty, the most dominant approach is to treat data uncertainty as random variables or random 

process. 

The traditional statistical approach for stochastic analysis is the Monte Carlo (MC) method [5, 6]. With the brute force MC 

implementation, one first generates an ensemble of random realizations with each parameter drawn from its uncertainty 

distribution. Deterministic solvers are then applied to each member to obtain an ensemble of results. The ensemble of results is 

then post-processed to obtain the relevant statistical properties of the results, such as mean and standard deviation, as well as the 

probability density function (PDF). Since estimation of the variance converges with the inverse square root of the number of runs, 

the MC approach is computationally expensive [5, 8]. 

Polynomial Chaos [9, 10, 11] is another frequently used non-sampling techniques for stochastic analysis, however, it is known 

to fail for long-term integration and lose optimal convergence behavior leading to unacceptable error-levels even in simple 

stochastic differential equations [11]. 

Operational matrix is another modern approach to quantify uncertainty in system models. This technique, known as the 

spectral or operational matrix, is based on a finite-dimensional approximation of the mathematical model of a system using 

orthogonal expansions. The main characteristic of this technique is reduction of a system of differential equations into algebraic 

equations, thus greatly simplifying the problem. In this paper, the operational matrix is used to account for the influence of the 

random changes in the parameter of fractional order system on the statistical characteristics of its output when the disturbance is 

deterministic or stochastic. 

II. FRACTIONAL ORDER  SYSTEM 

1. Fractional integral and derivative  

 Fractional integral Rieman Liouville integral of function ( )f t  is defined by [1] 
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 Among several formulas of the generalized derivative, the most common used one is the Riemann-Liouville definition 

 
1 ( )

1 ( )
( ) ( )

( ) ( )

t

m

a t m

a

d f
D f t d

m dt t

α

α

τ
τ

α τ − −
=
Γ − −

∫                                   (2) 

where m is the integer satisfied 1m mα− < <   

  For the generalized integration and differentiation, the property of linearity, similarly to the integer case, is conserved.  

2. Fractional linear models 

 Laplace transform of fractional order differentiation is defined as 
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 In particular, if the derivatives of the function ( )f t are all equal to 0 at, Eq. (3) can be rewritten as 
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The fractional order linear system of single variables can be defined as 
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The orders ,
i i

α β  are arbitrary real positive, ( )r t and ( )y t are respectively the input and output of systems. 

3. Generalized operational matrix of block pulse functions for fractional integral 

 The generalization of operational matrix of integration to a positive real order α according to the Riemann–Liouville 

formula is the following [7] 
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with the elements given by recurrence relation 
1 1 1
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 The operational matrix of derivative to a real order α may be calculated simply by 
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III. STOCHASTIC ANALYSIS OF FRACTIONAL ORDER SYSTEM  

The fractional order system in (5) can be rewritten in term of generalized operational matrix as follows 
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where
j j

T
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=  and input and output of system related by 

( ) ( ) ( ) ( ) ( ) ( )

y r

G

y N y NT T

C A C

y t C t r t C t

=

= Φ = Φ
                                   (11) 

where ( )
N

tΦ is family of block pulse functions. 

If ,
i j

a b are random variables (r.v), by utilizing the geometric series one may obtain the so- called stochastic fractional order 

matrix
st

A as below 
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Where ,i ja b is the mean of r. v and ,
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i j
a b are random central component.  
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Consider the output and input signals in the form of Fourier series expansions (11) and the spectral characteristics of the 

output and input are linked by
y r

C AC= .  

Thus, an equation for the output of stochastic systems is 
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where A  is the stochastic matrix operator defined by (12).  

     Using the link between spectral characteristics of input and output, the mean of output signal for fractional order system can 

be calculated as 
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From the statistical independence of matrix A and column vector of coefficient expansion of input
r
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Thus, the spectral characteristic of the mathematical expectations of the output and input signals of the stochastic system are 

related by 

Y r
m m

C AC=                                             (17) 

Accordingly, the spectral characteristic of the mathematical expectation of the output signal is defined as a linear 

transformation of the spectral characteristic of the mathematical expectation input. 

Deterministic matrix operator A  is the expectation of random stochastic matrix operator A in Eq. (13), which can be 

expanded as 
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 The stochastic moments of arbitrary-order for central random component ( )
r v

i
a  in Eq. (18) may be calculated for each ν 

using the method mentioned in [12]. 

Equation (18) shows how the random parameters given in A affect the expectation of the output. The mathematical 

expectation of the output system, as determined by (17), (18), can be calculated with a desired accuracy that depends on the 

expectation of stochastic matrix operator, which in turn is determined by ν, the number of terms for approximation in (18). 

The correlation function of the output stochastic system and its second central moment are next defined. By introducing the 

signal of the system in the form of Fourier series, the equation to define the second moment of output can be written as     
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 is the square matrix of the spectral characteristic of the second moment of the input of the system, which is 

determined using (21): 
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The covariance function or the second centered moment of the output system is defined as 
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where the first order moment is determined by (17), (18) and the second moment by (20).  

 The covariance function of the input signal is similarly associated with the second order moment  
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 Furthermore, the covariance function of the input signal can be expanded in terms of the orthonormal basis: 
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Thus, the spectral characteristic of the moments of input signal are related by 
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Equation (20) can thus be rewritten as follows 
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Taking into account (22) and (26), the following equation is obtained for the covariance function of the output stochastic system:  
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where A   is the stochastic operational matrix defined by (20). 

 Equation (28) gives the relation between the spectral characteristics of the covariance function of the output and input signal, 

and the mathematical expectations of the output and input signal.  
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IV. CASE STUDIES 

Consider fractional order system 
1.4

1

K

s +
where K  is random variable. Several simulation examples with different types of random 

gain and input are used to validate the correctness of the method. The stochastic signals used in the simulation are all Gaussian 

random process. All simulation parameters are described in Table 1. Statistical characteristics of closed loop systems for both 

regulatory and servo problems are shown in Figs. 1, which delineate the consistency between the operational matrix and Monte 

Carlo method. A computer, with AMD Phenom II X3 2.81 GHz 2GB RAM, was used for the test with simulation times also shown 

in Table 1. 

 

Case Monte Carlo Operational Matrix 

1) (0.5,1.5)K U∈  N of S: 2000 Comp. time 6.14 s. Comp .time 1.2 s. 

2) (1, 0.01)K N∈  N of S :2000 Comp. time  5.8 s. Comp .time 1.2 s. 

3) (0.5,1.5)K U∈ 1 25| |
1( ); 0.01

R

t t

rrM t K e
− −

= =  N of S: 8400 Comp. time 158 s. Comp .time 1.2 s. 

4) (1, 0.01)K N∈ 1 25| |
1( ); 0.01

R

t t

rrM t K e
− −

= =  N of S: 8400 Comp. time 155 s Comp .time 1.2 s. 

 

Table 1 Simulation parameter and computational time 

 
Figure 1 Statistical characteristic of output for fractional order system. Black:operational matrix; Blue Monte-Carlo 

V. CONCLUSIONS 

In this work, a statistical analysis for fractional order system was studied. It is shown that the use of Block Pulse Operational 

matrix method drastically reduces a computation time with a desired accuracy over that by the traditional Monte-Carlo method. 

Simulation examples have shown that the method gives accurate results for prediction statistical characteristic of fractional order 

system with random parameter under exciting by both deterministic and stochastic input. 
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