Electrical properties of Zr-doped TiO₂ thin films for DRAM capacitors

<u>권 혁</u>, 박현희, 하정숙* 고려대학교 화공생명공학과 (jeongsookha@korea.ac.kr*)

 TiO_2 is one of the most promising materials for high dielectric thin film because it has an exceptionally high-k value. (anatase: 30-40, rutile: 90-170) But, the crystalline TiO_2 film has poor leakage current characteristics for dynamic random access memory capacitor.

In this work, we made the rutile TiO_2 thin film on RuO_2 substrate using atomic layer deposition because the RuO_2 has an almost identical lattice distance in the rutile crystal structure to that of the rutile TiO_2 . And, we can solve poor leakage current characteristics by Zr-doping in the TiO_2 thin film.

After post-annealing of 20 nm thick TiO_2 film at 400 °C, the dielectric constant and the leakage current density were estimated to be ~60 and ~10⁻⁵ A/cm², respectively.

For the reduction of the leakage current density, a small amount of Zr was doped into TiO² film. The chemical composition of the Zr-doped TiO₂ thin films was confirmed to be $Zr_{0.5}Ti_{4.5}O_{10}$ by taking depth profiles of AES peaks. After post-annealing of the Zr-doped TiO₂ thin films, dielectric constants decreased to ~40 and the leakage current densities decreased ~10⁻⁵ A/cm².