Synthesis Gas Production from Combined H_2O and CO_2 Reforming of CH_4 for Gas to Liquid (GTL) over $Ni-CeO_2-ZrO_2$ Catalysts

노현석, 구기영¹, 정운호¹, 서동주¹, 서용석¹, 윤왕래^{1,*} 연세대학교 환경공학부; ¹한국에너지기술연구원 (wlyoon@kier.re.kr*)

Ni–CeO $_2$ –ZrO $_2$ catalysts have been prepared by the co–precipitation method and applied for combined H $_2$ O and CO $_2$ reforming of CH $_4$ (CSCRM) to produce synthesis gas with a H $_2$ /CO ratio of 2, which is suitable to gas to liquid (GTL) process. 15%Ni–Ce $_{0.8}$ –Zr $_{0.2}$ O $_2$ catalyst exhibits the highest activity as well as stability among the catalysts tested in this study. The high activity and stability of 15%Ni–Ce $_{0.8}$ –Zr $_{0.2}$ O $_2$ catalyst is mainly ascribed to high oxygen storage capacity, which enables to supply active oxygen species during the reaction, resulting in preventing carbon formation.