Theories and Applications of Chem. Eng., 2008, Vol. 14, No. 2

KIChE 2008 Fall Meeting, Busan, Korea

New Concept Composite Cathodes for SOFC

Min Zhang, Min Yang, Aiyu Yan, Zhenwei Wang, Mojie Cheng

Dalian Institute of Chemical Physics Chinese Academy of Sciences

22-24 Oct, 2008

Contents

1. Introduction

-Fundamentals on Cathode for SOFC

2. New cathode designs at DICP

2.1 Cathode with a high oxide conductivity electrolyte

- 2.2 Cathode with two different electrolyte components
- 2.3 Cathode with a modified electrolyte/cathode surface

2.4 Cathode with two different perovskite oxide catalysts

3. Summary

Dalian Institute of Chemical Physics, CAS

1. Introduction

Materials and multilayered structure

Main types of cathode materials

Cathode Materials	TEC 10 ⁻⁶ K ⁻¹	Electronic conductivity S/cm	Oxide conductivit y S/cm	Compatibility with electrolyte	Operation Temperature °C
LSM	12.3	2.01	1.7x10-4	(+) YSZ	750-1000
LSC	20.5	3.2	0.22	(+) CeO ₂ (-) YSZ	650-800
LSCF	14.8	1.94	0.04	(+) CeO ₂ ,LSGM (-) YSZ	650-800
SSC	21.5	2.47	0.133	(+) CeO ₂ ,LSGM (-) YSZ	500-650
BSCF	18.53	1.63	_	(+) CeO ₂ ,LSGM (-) YSZ	500-650

Differences in reaction paths for oxygen reduction

LSM

LSC

Electronic conductor

Mixed conductor

Composite of electronic and ionic phase

>Oxygen reduction over LSM cathode

Step 1 $O_2(\text{bulk}) \rightarrow O_2(\text{interface})$ Step 2 $O_2(\text{interface}) \rightarrow 2O_{ad}$ Step 3 $O_{ad} + e^- \rightarrow O^-_{ad}$ Step 4 $O^-_{ad} \rightarrow O^-_{TPB}$ Step 5 $O^-_{TPB} + e^- \rightarrow O^{2-}_{TPB}$ Step 6 $O^{2-}_{TPB, LSM} + V_{\ddot{o}, YSZ} \rightarrow O^x_{O, YSZ}$

Oxygen reduction on perovskite surfaces

oxygen vacancy

O₂

The valence state of Bsite cations, oxygen vacancies are changed after doping in A sites.

Tuning of catalytic activity, electrical conductivity, TEC, stability and so on.

Catalytic activity is largely dependent on the properties of transitional metal on B sites Co>Ni>Mn>Fe>Cr

Reactions over MIEC

Diffusion to surface

Adsorption onto surface

Charge transfer reaction

Diffusion of oxygen anions on surface or in bulk

Diffusion into electrolyte

Variation of polarization resistance with YSZ content in the LSM-YSZ composite cathodes

≻O₂-TPD of LSM-YSZ composites

2. New Cathode Designs

- 2.1 Cathode with a high oxide conductivity electrolyte
- 2.2 Cathode with two different electrolyte components
- 2.3 Cathode with a modified electrolyte/cathode surface
- 2.4 Cathode with two different perovskite oxide catalysts

2.1Composite cathode with a high oxide conductivity electrolyte -Impedance spectra

	LSM _{1.1} - 1Ce10ScZr	LSM _{1.1} - 5Ce10ScZr	LSM _{1.1} - 10Ce10ScZr
RO (ohm.cm²)	0.120	0.123	0.131
R1 (ohm cm ²)	0.093	0.073	0.046
R2 (ohm cm ²)	0.444	0.385	0.218

 \checkmark The adsorption, surface diffusion and charge-transfer reaction of oxygen are promoted with the increase of CeO₂ content.

2.1Composite cathode with a high oxide conductivity electrolyte

--Effect of ScSZ composition

✓ Best ScSZ electrolyte for cathode : 5Ce10ScZr

2.1Composite cathode with a high oxide conductivity electrolyte

- Effect of 5Ce10ScZr content

2.1 Composite cathode with a high oxide conductivity electrolyte

- Cell performance with the optimum cathode

Cell performance(W/cm²)

Temp/ºC	800	750	700	650
0.7V	1.96	1.52	1.15	0.70
MPD	2.24	1.78	1.35	0.82

2. New Cathode Designs

2.1 Cathode with a high oxide conductivity electrolyte

2.2 Cathode with two different electrolyte components

- 2.3 Cathode with a modified electrolyte/cathode interface
- 2.4 Cathode with two different perovskite oxide catalysts

2.2 Cathode with two different electrolyte components - Cell performance with LDC-YSZ-LSM cathodes

LDC content	Maximum Power Density (W cm ⁻²)			
LDC content	800°C	750°C	700°C	650°C
0%LDC	1.29	0.85	0.43	0.18
1%LDC	1.35	0.84	0.49	0.19
3%LDC	1.41	0.97	0.52	0.19
5%LDC	1.39	0.92	0.58	0.23
10%LDC	1.47	1.01	0.73	0.50
15%LDC	1.43	1.05	0.76	0.51
20%LDC	1.17	0.86	0.62	0.39
50%LDC	0.77	0.54	0.38	0.25

At 650°C, the cell with a 10%LDC-LSM-YSZ cathode gives a the MPD of 2.8 times of the MPD of the unmodified cell.

2.2 Cathode with two different electrolyte components -Impedance spectra of the cells with LDC-YSZ-LSM cathode

 \checkmark With the increase of LDC content, the arc at LF decreases at low LDC content and increases at high LDC content and shows a minimum at LDC content of 10-15 % $_{\circ}$

2.2 Cathode with two different electrolyte components

-- O₂-TPD profiles of LDC-LSM-YSZ composites

The introduction of LDC creates more oxygen vacancies on the composite surfaces. Theories and Applications of Chem. Eng., 2008, Vol. 14, No. 2

2.2 Cathode with two different electrolyte components -LSM-YSZ/LSM-LDC bi-layered cathode

>Fundamentals:

•LSM-LDC

High electrochemical activity

Bad chemical and thermal-mechanical compatibility with YSZ

•LSM-YSZ:

Good compatibility with YSZ

Low electrochemical activity

Solutions: LSM-YSZ/LSM-LDC bi-layered cathode

2.2 Cathode with two different electrolyte components -Performance of cells with LSM-YSZ/LSM-LDC bi-layered cathodes

2.2 Cathode with two different electrolyte components

- Activation energy of polarization resistance of cells with bi-layered cathodes

2. New Cathode Designs

- 2.1 Cathode with a high oxide conductivity electrolyte
- 2.2 Cathode with two different electrolyte components
- 2.3 Cathode on a modified electrolyte/cathode interface
- 2.4 Cathode with two different perovskite oxide catalysts

2.3 Cathode with a modified electrolyte/cathode interface -LT cell with the same electrolyte modified surface

2.3 Cathode with a modified electrolyte/cathode interfaceLT cell with a same electrolyte modified surface

(a) Cell with a GDC modifying layer $(0.15 \ \mu \ m)$

(b) Cell without a GDC modifying layer

The modifying GDC layer strengthens the contact between electrolyte and cathode

2.3 Cathode with a modified electrolyte/cathode interfaceLT cell with a same electrolyte modified surface

About mechanism

The same Ea and different A value suggest that the modifying change only the number of active sites.

2.3 Cathode with a modified electrolyte/cathode interfaceModified with a high ionic conductivity electrolyte

YSZ electrolyte film

ScSZ modified YSZ electrolyte film

2.3 Cathode with a modified electrolyte/cathode interfaceModified with a high ionic conductivity electrolyte

2. New Cathode Designs

- 2.1 Cathode with a high oxide conductivity electrolyte
- 2.2 Cathode with two different electrolyte components
- 2.3 Cathode with a modified electrolyte/cathode interface
- 2.4 Cathode with two different perovskite oxide catalysts

2.4 Cathode with two different perovskite oxide catalysts

BSCF

- New MIEC materials
- High oxygen reduction activity at low temp.
- Low sintering temp.

LSM

- High electron conductivity
- Low oxide conductivity
- Low oxygen reduction activity at low temp.
- High sintering temp.

How to take advantages of the two materials ?

2.4 Cathode with two different perovskite oxide catalysts LSM transition layer to bridge sintering temp. gap

EDX of LSM/BSCF bi-layered assembly

2.4 Cathode with two different perovskite oxide catalysts LSM/BSCF-GDC

2.4 Cathode with two different perovskite oxide catalysts Impedance of cell with LSM/BSCF-GDC

2.4 Cathode with two different perovskite oxide catalysts Polarization resistance

2.4 Cathode with two different perovskite oxide catalysts LSM-BSCF-GDC -microstructure

SEM pictures

The LSM-BSCF-GDC cathode shows a better microstructure than the BSCF cathode.

Theories and Applications of Chem. Eng., 2008, Vol. 14, No. 2 **2.4 Cathode with two different perovskite oxide catalysts**

- LSM-BSCF-GDC, Cell performance

The cell with a 30wt% LSM cathode exhibits the best cell performance attains a MPD of 1.394 and 0.55 W·cm⁻² at 600 and 500°C respectively.

3. Summary

Four types of new cathodes have been fabricated and investigated at DICP for SOFC.

- Cathode with high oxide conductivity electrolyte
- Cathode with two different electrolytes
- Cathode with a modified electrolyte/cathode interface
- Cathode with two different perovskite oxide catalysts

All the cells with new composite cathodes show better performance than the unmodified one, especially at lower temperatures.

Acknowledgements

- Ministry of Science and Technology (No.2004CB719506, 2006AA05Z147)
- > NSFC (No.20676132)
- Europe Commission (SOFC 600)
- > Chinese Academy of Sciences