Characterization of Palladium (Pd) on Alumina Catalysts Prepared Using Liquid Carbon Dioxide

김재훈*, George W. Roberts¹, Douglas J. Kiserow², 김재덕 한국과학기술연구원; ¹North Carolina State University; ²U.S Army Research Office (jaehoonkim@kist.re.kr*)

Supported palladium (Pd) catalysts were prepared using an environmentally benign route. Palladium (II) hexafluoroacetylacetonate $(Pd(hfac)_2)$ dissolved in liquid carbon dioxide $(L-CO_2)$ was used to deposit Pd nanoparticles onto low-surface-area a-alumina $(13.3 \text{ m}^2/\text{g})$ and high-surface area γ -alumina $(207.0 \text{ m}^2/\text{g})$ supports. Pd(hfac)₂ dissolved in L-CO₂ at 6.9 MPa and 28.5 °C was impregnated into the supports by slowly venting gaseous CO₂ until L-CO₂ was completely evaporated. After depressurization, the impregnated Pd(hfac)₂ was reduced in hydrogen at a relatively low temperature of 75 °C. The adsorption isotherm of Pd (hfac)₂ on γ -alumina suggests a weak interaction between the organometallic compound and the support. The average particle size on the low-surface-area a-alumina increased from 13.1±3.5 to 59.9±11.3 nm and the metal dispersion, measured by pulsed CO chemisorption, decreased from 11% to 3% as the Pd loading increased from 0.15 to 1.54 wt%. When high-surface-area γ -alumina was used, Pd particle size increased from 3.1±1.9 to 7.0±5.9 nm and metal dispersion decreased from 56 to 5 % as Pd loading increased from 0.58 to 3.94 wt%.