TiO₂ Film Deposition on Silica Gel Powders using Plasma Enhanced Chemical Vapor Deposition and Sol-Gel Method

<u>김국희</u>, 박성희^{1,*}, 김상돈 한국과학기술원; ¹우석대학교 (drpark@woosuk.ac.kr*)

A circulating fluidized bed (CFB) reactor is a very useful tool for uniform deposition of well-adherent materials on supporting materials. ${\rm TiO_2}$ film deposition on silica gel powders (100 μ m) by the Plasma Enhanced Chemical Vapor Deposition (PECVD) method at atmospheric pressure has been studied in a CFB reactor (18 mm-ID \times 1000 mm-high) without any post treatment. ${\rm TiO_2}$ films from precursor ${\rm Ti(O-i-C_3H_7)_4}$ (TTIP, 98%) were deposited on silica gel powders by using oxygen as a reaction gas. The effects of plasma power, oxygen concentration and argon concentration on deposition of ${\rm TiO_2}$ thin films have been determined in a CFB reactor. ${\rm TiO_2-deposited}$ powders by PECVD were compared with those by the sol-gel method. The deposited thin films were characterized by the X-ray diffraction spectra, Raman spectroscopy, SEM and BET analyses. The BET data of ${\rm TiO_2-deposited}$ silica gel by the PECVD exhibits larger specific surface area (482.13 m²/g) than that of the sol-gel method (429.67 m²/g). Also, ${\rm TiO_2}$ thin films are deposited uniformly by the PECVD on the external surface of the silica gel.