Regeneration Properties of Potassium Based Solid Sorbents for CO₂ Absorption

<u>이수출</u>, 김재창*, 최보윤, 안영수¹, 류청걸² 경북대학교; ¹에너지기술연구원; ²한전전력연구원 (kjchang@knu.ac.kr*)

The regeneration properties of sorbents prepared by impregnation of potassium carbonate were evaluated by observing the amount of CO_2 desorbed by heating at 150–400°C in a fixed bed reactor. To understand the regeneration property in detail, a TPD test was performed after CO_2 absorption at 60°C. Only one CO_2 peak in the TPD was found in the case of $\mathrm{K}_2\mathrm{CO}_3/\mathrm{AC}$ and $\mathrm{K}_2\mathrm{CO}_3/\mathrm{MgO}$. The peak temperatures of $\mathrm{K}_2\mathrm{CO}_3/\mathrm{AC}$ and $\mathrm{K}_2\mathrm{CO}_3/\mathrm{MgO}$ were at about 130°C and 360°C, respectively. However, two CO_2 peaks were observed in the TPD result for $\mathrm{K}_2\mathrm{CO}_3/\mathrm{Al}_2\mathrm{O}_3$. One peak was found at 106°C and the other was observed at temperature above 290°C. XRD pattern of $\mathrm{K}_2\mathrm{CO}_3/\mathrm{AC}$ after CO_2 absorption showed only KHCO $_3$ crystal structure which could be easily regenerated at low temperature like 150°C. XRD pattern of $\mathrm{K}_2\mathrm{CO}_3/\mathrm{MgO}$ also showed one phase which was assigned to $\mathrm{K}_2\mathrm{Mg}(\mathrm{CO}_3)_2$. While, XRD pattern of $\mathrm{K}_2\mathrm{CO}_3/\mathrm{Al}_2\mathrm{O}_3$ sorbent after CO_2 absorption showed two phases assigned KHCO $_3$ and KAl(CO_3) $_2$ (OH) $_2$. The decrease in the CO_2 capture capacity of $\mathrm{K}_2\mathrm{CO}_3/\mathrm{Al}_2\mathrm{O}_3$ and $\mathrm{K}_2\mathrm{CO}_3/\mathrm{MgO}$ at lower temperature than 250°C could be explained through the formation of KAl(CO_3) $_2$ (OH) $_2$ and $\mathrm{K}_2\mathrm{Mg}(\mathrm{CO}_3)_2$, respectively, which was not completely converted in the original $\mathrm{K}_2\mathrm{CO}_3$ phase.