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Introduction

For a safe operation of chemical process, it is important to detect faults, process upsets, or other special
events as rapidly as possible and then to find and remove the factors causing those events. Until now, monitoring
using multivariate statistical methods such as PCA have been modified and developed to analyze the high
dimensional and correlated data[1,2].

It is known that many of the monitored process variables are not independent. They could be combinations
of some independent components that may not be directly measurable. Independent component analysis (ICA)
can find these underlying factors from multivariate statistical data. ICA is a recently developed method in signal
processing where the goal is to find a linear representation of non-Gaussian data so that the components are
statistically independent [3]. A number of ICA have been reported in speech processing, biomedical signal
processing, feature extraction, financial time series analysis, data mining, and so on. Whereas PCA can only
impose independence up to the second order (mean and variance) while constraining the direction vectors to be
orthogonal, PCA imposes statistical independence up to more than second order on the individual component
and has no orthogonality constraint [4]. Hence, ICA can reveal more useful information than PCA. Furthermore,
the conventional SPM (statistical process monitoring) methods using PCA are based on the assumption that the
measured values of product quality are normally distributed. However, such assumption is often invalid for the
measurements gained from actual chemical processes because of their dynamic and nonlinear nature. In the
present work, a new statistical monitoring method based on ICA and kernel density estimation [5] is proposed.
For investigating the feasibility of the proposed method, its fault detection performance is evaluated and
compared with that of PCA monitoring method by applying those methods to the simulation benchmark of
biological wastewater treatment process.

Independent Component Analysis (ICA)
To introduce the ICA algorithm, it is assumed that d measured variables X, X2,K , X4 aregiven aslinear

combinations of m (< d ) unknown independent componentss;, S,,K , S,,. The independent components and
the measured variables are zero mean. The relationship between themis given by

X=AS+E (@]
where X =[x(1),x(2),K ,x(n)] OR™" is the data matrix, A =[a,,K ,a,,] OR™™ is the mixing matrix,
S=[s(1),s(2),K ,s(n)] DR™" is the independent component matrix, E 0 R™"is the residual matrix, and n is

the number of sample. Here, we assume d =m; when d equals M, the residua matrix, E, becomes the
zero matrix. The basic problem of 1CA is to estimate the original components S or to estimate A from X without
any knowledge of them. Therefore, the objective of ICA is to calculate a separating matrix W so that
components of the reconstructed data matrix S, given as
S =WX 2

becomes as independent of each other as possible. Using ICA algorithm, we can obtain the rows of S whose
normis 1.

The initial step in ICA is whitening, which transforms measured variables x(k) into uncorrelated variables

1

z(K) with unit variance. The whitening matrix Q is given by Q =A 2U", where A=diag[A K ,A4] is

diagonal matrix whit the eigenvalues of the data covariance matrix E(x(k)x' (k) and U isamatrix with the

corresponding eigenvalues as its columns. By defining the whitening matrix asQ and B=QA, the relationship
between z and s is given as.
z(k) = Qx(k) = QAs(k) = Bs(k) (©)
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Since s are mutually independent and z are mutually uncorrelated,

Efz(k)z" ()} = BE{s(k)s™ ()}BT =BBT =1. 4)
We have therefore reduced the problem of finding an arbitrary full-rank matrix A to the simpler problem of
finding an orthogonal matrix B, which then gives

s(k) =BT z(k) = BTQx(K) . (5)
From Egs. (2) and (5), the relation between W and B can be expressed as
wW=B'Q. (6)

To caculate B, it should be updated so that § may have great non-Gaussianity. There are two common
measures of non-Gaussianity: kurtosis and negentropy [3]. Kurtosis is sensitive to outliers. On the other hand,
negentropy is based on the information-theoretic quantity of (differential) entropy. Tthe negentropy J can be
approximated as follows [3]:

3(y)=[Efe(y} - Elwlf v
where VY is assumed to be of zero mean and unit variance, V is a Gaussian variable of zero mean and unit
variance, and G is any non-quadratic function. Hyvéarinen and Oja (2000) suggests a number of functionsfor G:
G,(u) =ai|09003h(a1U). G,(u) = exp(-a,u®/2), Gs(u) =u* ®
1
where 1< @, <2. Among these three functions, G, is a good general-purpose contrast function and was

therefore selected for use in the present study.

Based on their approximate form for the negentropy, Hyvérinen and Oja (2000) introduced a very simple
and highly efficient fixed-point algorithm for ICA, calculated over sphered zero-mean vectors z . This
algorithm calculates one column of the separating matrix B and allows the identification of one independent
component; the corresponding IC can then be found using Egs. (5). The algorithm is repeated to calculate each
independent component. The algorithm is as follows,

1. Tekearandom initial vector b, of unitnorm. Let i =1.

2. Let b;*= E{Zg(bTi—:LZ)}— E{g'(bTi—ll)}bi_l, where g is one of the derivatives of G5 presented in
Egs. (15), (16) and (17).

Ed
3. Divide b, =2

[o:
4. If ‘bini_l‘ differs from 1 by more than a predetermined tolerance, let i =i +1 and go back to Step

2. Otherwise, output the vector b; .

In order to estimate more than one solution, up to a maximum of m solutions, the algorithm can be run as
many times as required. After one has estimated p vectors, b,,K ,b ,, the decorrelation procedure entails two

simple additional stepsfor w D4l - First, let
p
bp+1 =bp+1_sz+1Tbjbj 9)
j=1
and then
b
by = P (10)
||b p+l

Note that the final vector b, given by the agorithm equals one of the columns of the (orthogonal) mixing

matrix B shown in Eq. (5). After calculating B, we can obtain demixing matrix W from Eq. (6). For more details
on the FastICA agrothm, see Hyvérinen and Oja (2000).

Process Monitoring Statistics based on ICA
We can obtainB , W ,and S, from applying ICA to the normal operating data. Then, they are separated
into the deterministic pat (B , Wy , S4 ) and excluded pat ( B, W, , S. ). The monitoring

8 2 2002



Theories and Applications of Chem. Eng., 2002, \Vol. 8, No. 2 2911

d

statistics 12(k) =sq4(K)Tsg(K) , 1.2(K) =s¢(K) so(K) | SPE(k)ZZ(xj (k) = %; (k))* of normal operating
=1

condition are calculated and their confidence limits are obtained by kernel density estimation. For on-line

monitoring, new independent data matrices, S,qq aNd Spewe Can beobtained if new data X (X, (J XK)) is

transformed through the separating matrices Wy and W, , i.e, S, o = WaXnew @0 Siane = WeXpan +

respectively. After calculating the monitoring statistics for new data, they are compared against the normal
operating data.

Illustrative Example

The proposed ICA monitoring agorithm is applied to the detection of various disturbances in the simulated
data on the basis of benchmark simulation. The IAWQ model No. 1 and a ten-layer settler model are used to
simulate the biological reactions and the settling process, respectively. Fig. 1 shows the flow diagram of the
modeled WWTP system. Influent data and operation parameters developed by aworking group on benchmarking
of wastewater treatment plants, COST 624, are used in the ssmulation [6]. We used seven variables among many
variables used in the benchmark to build monitoring system since they are typically monitored and important
variables in real WWT systems. The variables are listed in Table 1. We used 14 days as a norma data set
developed by the benchmark, where the training model was based on a normal operation period for one week of
dry weather and validation data was used on data set for last 7 days. The internal disturbance was imposed by
decreasing nitrification rate in the biological reactor, the specific growth rate for the autotrophs is decreased in
benchmark. The autotrophic growth rate at sample 288 is decreased rapidly from 0.5 to 0.4 day™ and linearly
decreased from 0.4 to 0.2 day™ until sample 480. In this case, as shown in Fig. 2, PCA indicates many false
alarms even under normal operating data and cannot detect the internal disturbance when disturbance occurs
since the periodic features of wastewater plant are dominant and indicate. The same condition is applied to ICA.
In this case, the fault detection is allowable. The ICA monitoring charts are shown in Fig. 3. 1% value increases
rapidly around sample 288 and reveals a diurnal variation, which indicates successive fault detection. And there
is no false darm under normal operating data. In Fig. 4, contribution plots for ICA monitoring charts are
displayed. From contribution plot for 1% at sample 600, we can conclude that variable 1 (SNH, ), variable 4
(S 03) and variable 5(S-NO,) are primarily contributed to the |2 statistic.

Conclusions

This paper proposes a new monitoring approach using ICA method for multivariate statistical process
control. Monitoring using | CA gives more sophisticated results rather than conventional method using PCA since
ICA imposes dtatistical independence up to more than second order on the individual component and has no
orthogonality constraint. Especially, when the measured variables have non-Gaussian distribution, monitoring
using ICA with kernel density estimation can give better result. The proposed monitoring method is applied to
the simulation benchmark of biological wastewater treatment process and shows the power and advantages of the
I CA monitoring over PCA monitoring.
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Table 1. Variables used in the monitoring of the

benchmark model

No. Symbol Meaning
1 SNH;, Influent ammoniac conc.
2 Qin Influent flow rate
3 TSS, Total suspended solid
(reactor 4)
4 SO, Dissolved oxygen conc.
(reactor 3)
5 SO, Dissolved oxygen conc.
(reactor 4)
6 KLas Oxygen transfer coefficient
(reactor 5)
7  SNO, Nitrate conc. (reactor 2)
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Fig.1l. Process layout for the simulation
benchmark.
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Fig. 2. PCA monitoring charts: T and SPE plots

when deteriorating nitrification occurs
benchmark simulation.
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Fig. 3. ICA monitoring charts: 1, 1.2 and SPE
plots when deteriorating nitrification occurs in

benchmark simulation.
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