액상합성법에 의한 Supercapacitor용 NiO나노입자의 제조 및 특성

<u>김두현</u>, 이수한, 송기창 건양대학교 화학공학과

Preparation and Characteristics of Nickel Oxide Nanoparticles for Supercapacitor by Liquid Phase Synthesis Method

<u>Du Hyun Kim</u>, Soo Han Lee, Ki Chang Song Department of Chemical Engineering, Konyang University

서론

각종 전자기기의 소형화가 진행되면서, 소형, 경량, 대용량이면서도 급속 충방전이 가능한 에너지 저장장치가 요구되고 있다. 특히 하이브리드 자동차. 전기자동차에는 충전용량이 적은 종래의 캐패시터와 이차전지를 사용하기 어려우므로, 이 분야의 신속한 발전을 위해서는 고성능 에너지 저장장치인 초고용량 캐패시터의 개발이 시급히 요구되고 있다[1-2].

초고용량 캐패시터는 Supercapacitor, Ultracapacitor 또는 전기이중층 캐패시터라 고 불리는 매우 큰 용량을 지닌 캐패시터를 지칭한 것이다. 이들은 그 작동원리로 볼 때 총괄적으로 전기화학 캐패시터라고 불리어질 수 있으며, 종래의 캐패시터 또는 이차전지 와는 다른 새로운 범주의 에너지 저장장치이다. 이 전기화학 캐패시터는 전기이중층 캐 패시터(electric double layer capacitor, 이하 EDLC)와 Pseudocapacitor(redox capacitor) 라고 부를 수 있는 두 형태로 분류될 수 있다. 고체전극과 전해질 용액과 같이 두 상의 계면에 있어서 정ㆍ부의 전하는 매우 짧은 거리에 배열, 분포하는데, 이 전하의 배열에 의해 생기는 층이 전기이중층이다. 이 전기이중층은 전극과 이온사이에 전자의 이동을 동반하지 않은 non-faradaic 반응에 의해 형성된다. 전기이중층의 형성에 동반되는 전극 계면에 생기는 유량을 전기이중층 용량(electric double layer capacitance)이라고 하며 이 것을 이용한 캐패시터가 EDLC이다. 이것에 비해서 전자의 이동을 동반하는 흡착반응 또는 redox반응 등의 faradaic반응에 의해서도 용량이 생긴다. 이 용량을 유사용량 (pseudocapacitance)이라고 하며 이것을 이용한 캐패시터를 Redox Pseudocapacitor 또는 Ultracapacitor라고 한다[3].

Pseudocapacitor의 전극 활 물질로는 지금까지 주로 ruthenium oxide(RuO $_x$), iridium oxide(IrO $_x$) 등의 금속산화물이 보편적으로 많이 사용되어 왔으나, 이들 산화물은 우수한 전기화학적 거동을 보이는 반면 가격의 고가로 인하여 경제성이 떨어지는 단점이 있다. 한편 Pseudocapacitor에서는 전하의 저장반응은 표면근처로 제한되므로, EDLC 재료와 마찬가지로 축전용량은 전극 활 물질의 비표면적에 비례한다. 따라서 전극 활 물질의 크기가 작을수록 비표면적이 커져 캐패시터의 용량이 증가하므로 전하의 저장능력이 큰 Pseudocapacitor의 개발을 위해서는 전극 활 물질의 나노입자화가 요구되고 있다. 따라서 우수한 성능의 초고용량 캐패시터를 개발하기 위해서는 저렴한 비용의 금속산화물을 이용하면서도 나노미터 크기를 갖는 전극 활 물질의 개발이 시급한 형편이다.

NiO는 일차, 이차전지의 전극활 물질, 전자 착색재료, 전해조의 전극 등으로 그 응용 범위가 매우 넓고 다양한 재료이며, 가격이 저렴하면서도 에너지 저장능력이 뛰어나

다고 알려져 있다[4]. 본 연구에서는 경제적이면서도 에너지 저장능력이 큰 Pseudocapacitor를 개발하기 위해 전극 활 물질로서 NiO를 이용하기 위해 액상합성법의 일종인 알코올-물 혼합법을 이용해 나노미터 크기를 갖는 NiO 분말을 제조하고자 한다.

실험

본 실험에서는 출발물질로서 Nickel acetate tetrahydrate (Aldrich 98%)를 사용하였으며, 일정량의 Nickel acetate tetrahydrate에 증류수를 가하여 0.2M농도 수용액을 50mL 제조하였다. 이렇게 제조된 수용액에 일정부피의 Ethanol (250mL)을 첨가하여 수조에서 81℃까지 서서히 승온하였다. 승온 과정 중 침전이 발생하여 침전물이 얻어지는데 81℃에서 침전물이 재 용해되는 현상을 방지하기 위해 침전제로써 28%의 NH₄OH를 첨가해 용액의 pH를 각각 6, 8, 9, 10으로 조절하였다. 그 후 이 용액을 7500rpm에서 20min동안 원심분리시켜 침전물을 얻었다. 침전물에 있는 불순물을 제거하기 위하여 일정부피의 증류수로 2회 세척을 실시하였으며, 세척된 분말을 100℃의 건조오븐에서 건조시킨 후 막자사발로 분쇄하여 미분말을 제조하였다. 건조된 분말을 250℃로 열처리시켜 XRD, FT-IR, BET측정 등으로 분말의 특성을 살펴보았다.

결과 및 토론

Fig.1은 100℃에서 건조시킨 분말에 대하여 2℃/min의 승온속도로 600℃까지 열분석을 한 결과이다. DTA곡선은 250℃부근에서 강한 발열Peak가 나타나는데 이것은 수산화물의 결정수와 Nickel acetate중의 acetate기가 소멸되면서 나타나는 peak로 사료된다. 한편 TG곡선은 50-100℃부근에서 탈수로 인한 것으로 여겨지는 중량감소가 일어나며, 250-300℃ 부근에서는 결정수의 탈수 및 acetate기의 연소로 인해 중량감소가 크게 진행되는 경향을 보여주고 있다. Fig.2는 pH9의 조건으로 제조된 분말에 대해 여러 온도에서 열처리된 분말의 XRD결과로 100℃, 150℃, 200℃에서는 비정질을 보이다 250℃의 온도에서 결정화되는 것을 확인 할 수 있다. Fig.3은 여러 pH조건(pH6, 8, 9, 10)에서 분말을 합성하여 250℃에서 열처리시킨 분말의 비표면적 결과이다. 분말의 비표면적은 합성시의 pH조건에 크게 의존하며 pH9의 조건에서 가장 큰 값을 보임을 알 수 있다. Fig.4는 여러 pH조건(pH6, 8, 9, 10)에서 분말을 합성하여 250℃에서 열처리시킨 분말의 기공크기의 변화를 나타낸 그림이다. pH6, 8, 9조건의 분말은 40-50Å부근의 평균 기공크기를 갖는 monomodal pore size distribution을 보였으며, pH10조건에서의 분말은 bimodal pore size distribution의 기공특성을 보이고 있다.

참고문헌

- 1. B. E. Conway, J. Electrochem. Soc. 138, 1539 (1991).
- 2. Trasatti, S. and Kurzweil, P. Platinum Met. Rev. 38, 46(1994).
- 3. B. E. Conway, Proc. of the Sym. on Electrochemical Capacitor , p.15-49, Chicago, USA (1995)
- 4. C. Zhaorong, L. Gongan, Z. Yujuan, C. Jianguo and D. Yunchang, J. of power Sources, 74, 252 (1998).

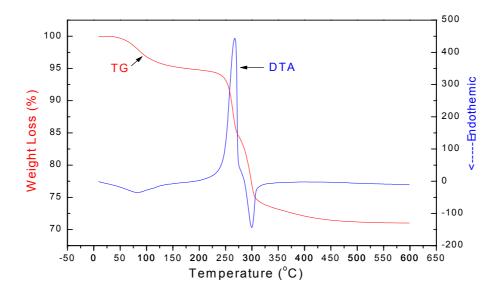


Fig.1 TG-DTA curves of nickel oxide powder prepared at pH 9 and dried at 100°C.

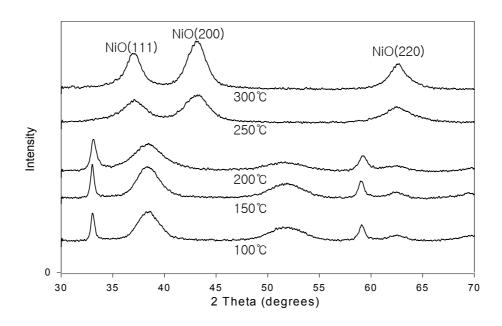


Fig.2 X-ray diffraction patterns of nickel oxide powders prepared at pH 9 and calcined at different temperatures.

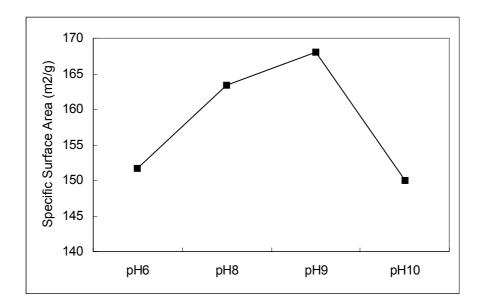


Fig.3 Specific surface areas of nickel oxide powders prepared at different pH and calcined at $250\,^{\circ}\text{C}$.

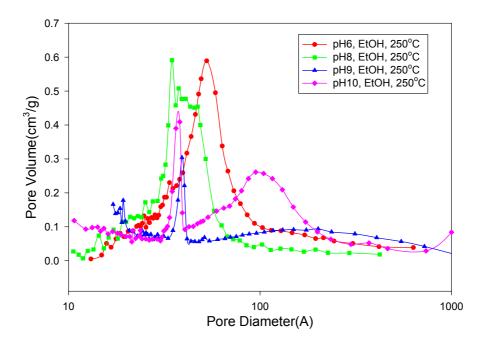


Fig.4 Pore size distributions of nickel oxide powders prepared at different pH and calcined at $250\,\mathrm{°C}$