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Introduction

Among several categories of equation of state, the hard-sphere equation of state is adapted as a very useful reference system to represent numerous types of molecular fluids despite of its simplicity. Further, the hard-sphere system has another merit that it can be extended directly to the hard-sphere-chain system by introducing chain connectivity term, which is used in most existing equations of state for chain-like molecules. 

In this study, we developed three hard-sphere-chain equations of state based on the well-known Carnahan-Starling hard-sphere equation differing in the perturbation terms, that have more simplified form than those of the models mentioned above. Each model is directly extended from the Carnahan-Starling equation by introducing a bonding term which accounts for the chain connectivity. We then compared each model with computer simulation data and experimental vapor-liquid equilibrium data of pure saturated fluids.
Theoretical Consideration

Reference terms

The equation of state for hard spheres and hard-sphere chains generally consists of two contributions 
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In this study, we employ the well-known Carnahan-Starling (C-S) equation of state as the reference equation for hard spheres.
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where 
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 is defined as the packing fraction or reduced density which can be expressed as
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 is the hard-sphere diameter and 
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 is the number density. 

In recent publications, two different types of bonding terms are found and adapted for this study.
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where 
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 is the pair radial distribution function for hard sphere chains at contact:
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We employ eq.(5) to generate the equations for the hard-sphere chains from C-S equation by the following relationship proposed by Kim and Bae.
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where 
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Z

 stands for the reference equation representing the compressibility factor for hard sphere chains, 
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 is the bonding term which accounts for chain connectivity, and 
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 represents the C-S hard-sphere equation of state. 

The final expression for the reference equation hard-sphere chain has the form of 
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Perturbation terms

Simplest type of van der Waals attractive term

In 1873, van der Waals proposed the well-known equation of state for normal fluids
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where 
[image: image18.wmf]P

 is the pressure, 
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 is the absolute temperature, 
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 is the molar volume, and 
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 is the universal gas constant. Song et al. adapted this perturbation term and proposed the perturbed hard-sphere-chain (PHSC) equation of state to describe the phase equilibrium properties of fluids including chain-like molecules. 
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In eq.(10), parameter 
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 which  reflects the attractive forces between two non-bonded segments, is temperature-dependent function given by
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where 
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Perturbation term proposed by Bokis et al. 

Bokis et al. pointed out this shortcoming that frequently occurs in most of existing equations of stateand suggested a simple expression for the perturbation term by directly correlating the Monte Carlo simulation data. 
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where 
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 is the attractive contribution to the compressibility factor for a spherical molecule (monomer). 
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 are constants for each chain and vary approximately linearly with chain length according to 
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Square-well based equation for the attractive term

In 1998, Sadowski derived an equation of state using a physically meaningful expression while retaining a simplicity. For spherical fluids (
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), the attractive contribution is described using a simple mean-field expression
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The attraction parameters 
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with 
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In this model, the hard-sphere diameter 
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 is considered as a function of temperature following the Barker-Henderson theory:
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with 
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For chain fluids, the compressibility factor of a chain fluid in the attraction term is calculated from that of a spherical fluid using the following relation
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where 
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 is the number of segment-segment interactions in the chain system. For a system which consists of spherical molecules only, 
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 can be calculated as below
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To estimate the number of interactions for the chain system, the ratio of 
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 is approximated to be equal to the ratio of the radial distribution function:
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The value 
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 for the system of hard-spheres can be obtained from the Percus-Yevick equation
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For hard-sphere chains, Chiew developed an analytical expression for the radial distribuion function:
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Eq.(24) reduces to eq.(23) for the hard-sphere system (
[image: image53.wmf]1
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Using eq.(21) through eq.(24), a number of interactions in the chain system are now determined as:
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Eq.(25) represents that 
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 depends on both the segment number and the system density. 

Results and Conclusion

Three characteristic parameters for each model are determined from experimental data of pure fluids. In comparison with computer simulation data, Bokis’ and Sadowski’s models show attractive contributions to the compressibility factor fairly well, however, the Song’s model cannot represent density dependence of the ratio of attractive compressibility factor of hard-sphere chain to that of spherical molecule when plotted versus the reduced density. Vapor-liquid equilibria of saturated pure fluids is reproducible using three characteristic parameters without any additional adjustable parameters with high accuracy. The Sadowski’s model best describes experimental vapor-liquid equilibria of pure hydrocarbons, while the Bokis’ model shows deviations in low-density region. To describe vapor-liquid equilibria of saturated pure water that shows a unique behavior, an additional scaling parameter, 
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 is introduced into the Sadowski’s model. The improved equation describes the vapor-liquid equilibria of water remarkably well while the original model shows a large deviation from the experimental data. 
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 Monte Carlo simulation data [32]
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 Experimental Data [35]
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FIGURE 1 Monte Carlo simulation data for the system of spherical molecule (� EMBED Equation.3  ���) which represents the compressibility factor. The solid line is calculated by the C-S equation. The open squares are simulation data reported by Barker and Henderson





FIGURE 2 Vapor-liquid equilibrium experimental data for saturated water. The lines are calculated by Sadowski’s model with different values of � EMBED Equation.3  ��� as denoted in the figure. The open circles are experimental data reported by Smith and Srivastava
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