제 3 장 DMC 합성실험 1 - 균일계 촉매

1. 시 약

1.1. 촉 매

촉매는 KOH, K₂CO₃, LiOH, NaOH를 포함하는 여러 가지 염기성촉매와 그 외 염화물과 수산화물 등 약 40여종의 촉매가 사용되었다. 사용된 촉매들이 아래 표 3-1에 정리되었다. 기존 문헌에서 발표된 에스테르교환반응용 촉매들을 종합하여 요약하였으며 (표 3-2) 이를 기초로 촉매선택 및 응용에 활용하였다.

1.2. 반응 원료

반응원료인 메탄올은 J.T. Baker사의 HPLC용(순도: 99.99%이상)을 구입하여 사용하였다. 초음파와 감압장치를 이용하여 용존기체를 제거하였다. 그리고 또 다른 반응원료로서 에틸렌카보네이트는 Acros Organics사의 제품을 구입하여 사용하였으며 그순도는 99%이상이었다. 에틸렌카보네이트는 녹는점이 약 40℃로서 상온에서 고상으로 존재하는점을 고려하여 약 50℃온도가 유지되는 수조에서 액체상태로 유지하여 실험에 사용하였다.

1.3. Authentic 시

Authentic시료로서 사용한 디메틸카보네이트(DMC)과 에틸렌글리콜(EG)은 모두 순도 99%이상으로 각각 Acros Organics사와 J.T Baker사에서 구입하여 사용하였다. 구입된 시약들은 에스테르교환반응의 생성물들로서, 실험에서 얻어진 GC 면적을 실제조성 (mol% 또는 wt.%)으로 환산하기 위하여 사용되었다.

< 표 3-1 > 에스테르교환반응에 사용된 촉매

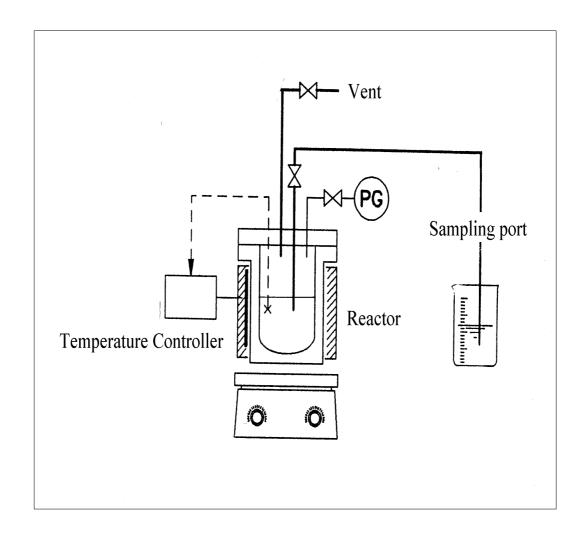
No.	촉 매	제 조 사	순 도 (%)
1	K_2CO_3	Kanto Chemical Co.	99.5
2	КОН	J.T. Baker	87.8
3	NaOH	Yakuri Pure Chemical Co.	96+
4	LiOH	Yakuri Pure Chemical Co.	97
5	KI	Junsei Chemical Co.	99.5
6	KCl	한국기술진흥공업(주)	99
7	KBr	Kanto Chemical Co.	99
8	LiBr	Aldrich Chemical Co.	99.9+
9	LiCl	Aldrich Chemical Co.	99.9
10	Ca(OH) ₂	Junsei Chemical Co.	95
11	$Al(OH)_3$	Junsei Chemical Co.	C.P.
12	Ba(OH) ₂	Kanto Chemical Co.	97
13	$Mg(OH)_2$	Kanto Chemical Co.	95
14	$Cu(OH)_2$	Aldrich Chemical Co.	_
15	AlCl ₃	Acros Organics	99
16	NaCl	Junsei Chemical Co.	99.5
17	MgCl_2	Wako Pure Chemical Co.	98
18	CaCl ₂	Shimakyu Pure Chemical Co.	95
19	ZnCl ₂	Kanto Chemical Co.	91
20	$CuCl_2$	Aldrich Chemical Co.	97
21	NiCl ₂	Osaka Pure Chemical Co.	96
22	MnCl ₂	Yakuri Pure Chemical Co.	98

< 표 3-1 > 에스테르교환반응에 사용된 촉매 (계속)

No.	시 약	제 조 사	순 도 (%)
23	Zeolite 3A	Yakuri Pure Chemical Co. (1/16")	-
24	Zeolite 4A	Aldrich Chemical Co. (Powder)	_
25	Zeolite 5A	Aldrich Chemical Co. (Powder)	-
26	Zeolite 13X	Aldrich Chemical Co. (Powder)	_
27	Zeolite NaY	Aldrich Chemical Co. (Powder)	
28	Tl ₂ CO ₃	Aldrich Chemical Co.	99.9
29	Cu-Acetate	Aldrich Chemical Co.	98
30	Pd-Acetate	Aldrich Chemical Co.	98
31	KSCN	Junsei Chemical Co.	99
32	KMnO ₄	Wako Pure Chemical Co.	99.3
33	K ₄ P ₂ O ₇	Junsei Chemical Co.	98
34	K ₂ Cr ₂ O ₇	Wako Pure Chemical Co.	98.5
35	C ₆ H ₄ (COOH) -(COOK)	Junsei Chemical Co.	99
36	PbO ₂	Junsei Chemical Co.	95
37	Y_2O_3	Aldrich Chemical Co.	99.99
38	La ₂ O ₃	Aldrich Chemical Co.	99.99
39	CeO ₄	Aldrich Chemical Co.	99.9
40	Amberlite 904	Acros Organics	-
41	KI/MnCl ₂	몰비 2:1로 혼합사용	-

< 표 3-2 > 에스테르교환반응 2단계용 촉매

촉매 분류	촉 매 예	특 징	특허 <i>No.</i>	
① 아민류 (질소함유염기류)	Tertiary (aliphatic) amine: 트리에틸아민, 트리부틸아민, 메틸디벤질아민,디메틸사이클로헥실아민	휘발성	USP 4,062,884 DT-OS 2,615,665 JP 4,028,542-B	
	Sodium alcoholates		USP 3,642,858	
	CH ₃ COONa(Sodium acetate)			
① 아키기그수 미	CH ₂ ClCOONa(Sodium chloroacetate)	반응시간길며		
② 알카리금속 및 알카리금속	Sodium ethylate	온도높일 경우	USP 4,181,676	
화합물 계	Sodium methylate	부반응 초래	(′80)	
커 답 는 게	LiOH, KOH			
	LiCl			
	Tl_2CO_3 , $Tl_2(CO_3)_3$			
	Tl ₂ O, Tl ₂ O ₃	반응속도향상	USP 4,307,032	
③ 탈륨계	TIOH	부반응억제인	('81) EP 1083	
	(CH ₃ COO) ₃ Tl, CH ₃ COOTl (탈륨아세테이트)	반면,	Japan Kokoku	
	TlBr, TlBr ₃	독성이며 고가	27658/85	
	TlNO₃			
④ Zr, Ti, Sn염	Butylstannonic산 턴메톡사이드, 디메틸틴, 디부틸틴옥사이드 디부틸틴디로레이트, 지르코늄알콕사이드	균일촉매	USP 4,661,609	
⑤ 이온교환수지	Quaternary ammonium기 가진 강한 염기성 음이온교환수지	열저항, 내구성 약함	USP 4,691,041 Japan Kokai 31737/89, 238043/88	
6 Bivalent	Bivalent sulfur or Bivalent Se화합물		USP 4,734,518	
⑦ 포스핀류	트리부틸포스핀, 트리페닐포스핀, 디페닐포스핀	향류흐름연속반응	USP 4,734,519 Japan Kokoku 4381/86	
⑧포스핀고분자계	Polymer-bound triphenylphosphine on	선택도:98%이상	USP 5,214,182	
	styren-divinylbenzene copolymer	2 / 30,3 / 0	('93)	
9 Bifunctional	염화아연, 염화마그네슘, 염화구리 + Tetrabutylammonium iodide	[AaBb]m[CcDd]n형	USP 5,218,135 ('93)	
⑩ 알카리메탈하이 드록사이드	КОН	연속공정 적용	USP 5,359,118 ('94)	
① 히토류계	Y ₂ O ₃ , La ₂ O ₃ , CeO ₂	불균일촉매	USP 5,430,170 ('95)	
① 제올라이트	K form Azeolite Na form Azeolite Ca form Azeolite	열저항, 내구성 우수	USP 5,436,362 ('95)	
③ 알카리메탈 카보네이트	K ₂ CO ₃	액-액반응 추출 컬럼	USP 5,489,703 ('96)	
④ 기타	납화합물		Japan Kokai 9356/92	


2. 실험 방법 및 장치

에스테르교환반응을 위한 촉매로서 일반적으로 염기성의 균일촉매인 KOH, K_2CO_3 를 비롯하여 여러가지 Hvdroxide와 Chloride계열의 촉매를 사용하였다.

그림 3-1 은 회분식 에스테르교환반응 장치의 개략도를 나타내고 있다. 반응기는 스테인레스-스틸재질의 오토클레이브(200ml용량)가 사용되었다. 200 psig 범위의 반응압력을 측정할 수 있도록 아나로그 압력계를 설치하였으며 반응기 내의 온도는 열전대와 PID 방식의 온도컨트롤러를 이용하여 일정하게 유지하였으며 반응이 진행되는 동안의 온도변화가 ±1℃가 되도록 하였다. 회분식 반응기이므로 일정시간 간격으로 *in-situ*분석을 위해 밀페된 반응기 내 액상깊이의 2/3지점에 1/8in 스테인레스-스틸 관을 설치하여 반응온도 상승에 따른 메탄올의 증기압을 이용하여 반응시료를 채취하였다. 일정시간 간격으로 0.2 씨의 시료를 취하여 GC 분석하였다. 초기 공급반응물의 투입몰비는 MeOH : Ethylene Carbonate (EC) = 2.0 을 기준으로 하였으며 이 후 실험에서는 0~20.0 범위까지 변화시켰다. 반응기 온도는 상온~140℃까지 변화시켜 실험하였다. 촉매성능에 따라그 이상의 반응온도를 적용하였으나 최대 200℃를 넘지않도록 하였다. 반응압력은 외부의 조절없이 각 반응온도에서 증기압으로 초래되는 자체압 (Autogeneous pressure)만을고려하였다. 실험 중 반응물이 균일하게 유지되도록 마그네틱 교반장치를 이용하여 교반하였다.

반응생성물의 분석은 Gas Chromatography (Gow-Mac, 550P)를 이용하였으며 검출기는 TCD (Thermal Conductivity Detector)를 이용하였다. Column은 10% Carbowax (1/8in.×2m, Chrom W-HP, 80/100)이 사용되었다.

또한, 성분분석을 위해 GC mass spectrometer (HP Co., 5890, 5971A mass detector) 를 사용하였다.

[그림 3-1] 회분식 에스테르교환반응장치의 개략도

3. 분석 방법

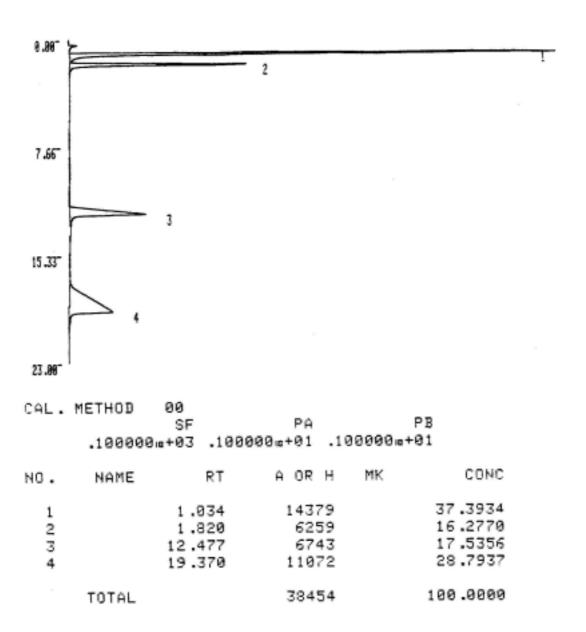
3.1. 분석방법

GC는 열전도도 검출기가 장착되어있는 Gow-Mac series 550P를 사용하였으며, 컬럼은 2M길이의 Carbowax를 사용하였다. 상세한 GC 운전조건은 다음과 같다 (표 3-3)

/	77	$^{\circ}$	\	CC	분석	マコ
<	11	3-3	>	(1(元叫	4つ

Column Material	10% Carbowax Chrom W-HP 80/100
Column Size	1/8 inch×2m, 스테인레스-스틸
Column Temp.	Initial Temp: 90°C (2 min)
(Programmed)	Ramp: 10°C/min (11 min)
	Final Temp: 200℃ (10 min)
	Run Time: 23 min
Injector Temp.	170 ℃
Detector Temp.	200 ℃
Detector Current	180 mA
Carrier Gas	Helium, 30 cc/min

GC를 사용한 반응생성물의 분석 예는 그림 2와 같으며 반응물과 생성물의 각 성분별 머무름시간은 MeOH: 1.03분, DMC: 1.82분, EG: 12.48분, EC: 19.37분이었으며 미량의 부반응 생성물들은 GC/Mass로 확인하였다.


3.2. 전환율과 선택도 및 수율

반응실험 결과 전환율과 선택도 및 수율은 다음과 같이 계산하였다.

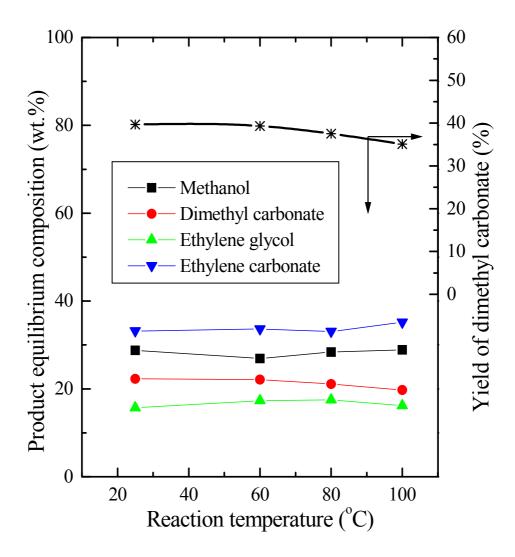
전환율(EC)(%) =
$$\frac{\dot{z}$$
기 유입된 EC 의 량 $-$ 반응 후의 EC 의 양 \dot{z} 기 유입된 EC 의 량

선택도(%) =
$$\frac{\text{생성된 } DMC$$
량× $Factor}{\text{(생성된 } Byproduct 량×}Factor) + (생성된 DMC 량× $Factor)} \times 100$$

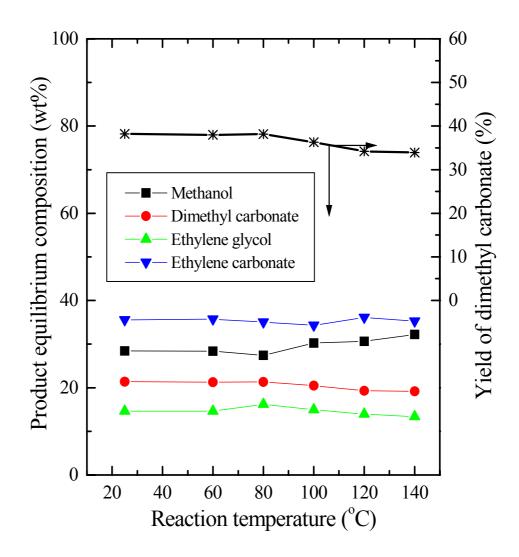
DMC 수율(%) = 전환율(EC) × 선택도 × 0.01

[그림 3-2] 에스테르교환반응에 의한 DMC합성에서의 GC크로마토그램

4. 회분식 반응의 결과 및 고찰


4.1. 온도의 영향

에스테르교환반응에 적합한 염기성의 알카리금속 균일촉매를 사용하여 반응시킨 결과를 나타내었다(그림 3-3과 4). DMC 제조용으로 사용된 균일촉매로 지금까지 촉매능이우수한 것으로 알려진 KOH, K2CO3를 사용하였다. 그림 3-3은 균일촉매로서 KOH를 반응물에 투입하여 상온(25℃)~100℃범위에서 반응물과 생성물의 무게조성비를 나타낸 것이다. 상온에서의 무게조성은 실험의 모든 온도구간에서 큰 변화가 없었다. 상온부터 100℃까지 반응성이 비슷하므로 이미 상온에서 반응평형에 도달한 것으로 판단된다. 그림 3-4는 균일촉매로서 K2CO3를 반응물에 투여하여 상온(25℃)~140℃의 온도범위에서 생성물의 무게조성비를 나타낸 것이다. 그림 3에서의 결과와 비슷한 경향을 보여 전 온도구간에 반응물 및 생성물의 조성변화에서 큰 차이를 보이지 않았다. 촉매성능도 KOH와비슷하여 상온에서 이미 반응이 완료됨을 알 수 있다.


그림 3-3과 3-4의 실험결과에서 나타난 바와 같이 60-80℃범위에서 역반응으로 약간 치우치는 경향을 보이고 있다. 원과 삼각형은 각각 DMC와 EG를 표시하며 또한, 역삼각형과 사각형은 각각 EC와 MeOH를 표시하고 있다. 그림에서와 같이 생성물들인 DMC와 EG곡선은 온도가 상승함에 따라 약간 아래로 치우치는 경향이 있고, 반응물들인 에틸렌카보네이트와 메탄올곡선은 위로 점차 상승하는 경향을 나타내고 있다. 이러한 경향은 반응성에는 큰 영향이 없지만 회분식반응기에서는 실제로 나타날 수 있는 현상이라고 판단된다. 이는 분석대상이 반응기 내에서 기액 평형을 이루고 있는 두 상중에서 액상이므로 이를 in-situ로 채취하여 분석하고자 하는 액상조성은 그 상황에서의 반응온도에 영향을 받기 때문으로 해석된다.

70-80℃범위 이상의 온도에서 저비점(64.5℃)인 메탄올의 증기압이 급격히 커짐에 따라 액상의 메탄올이 기상으로 이동하게 되고 상대적으로 액상 중의 메탄올의 조성이 감소하게 되므로 역반응의 포텐셜이 생기는 것으로 판단된다. 따라서 온도가 높아짐에 따라 평형위치가 역반응쪽으로 약간 이동한 반응 결과를 나타내었다. DMC의 끓는점은 90℃로서 메탄올보다 다소 높은 편이며, MeOH와 DMC는 70/30의 공비물을 형성하므로 이러한 역반응 진행은 가능한 것임을 뒷받침하고 있다. 아울러 EG과 EC의 끓는점은 각각 196℃, 240℃이므로 두 물질의 증기압은 무시할 만하다고 할 수 있다.

반응결과에 따라 KOH 또는 K_2CO_3 는 대표적인 염기성촉매로서 에스테르교환반응에 우수한 성능을 나타냄을 확인할 수 있었다. 이들 촉매는 본 실험조건 (반응온도: 상온 -100℃)에서 약 35-40%의 DMC 수율로 대등한 촉매성능을 나타내었다. 온도가 증가할 수록 역반응이 약간 진행되는 경향이 있으나 그 영향이 무시할 정도이며 높은 반응온도에서 반응속도가 빨라지므로 적절한 반응온도는 100℃ 부근이라고 판단된다. 단, 반응원

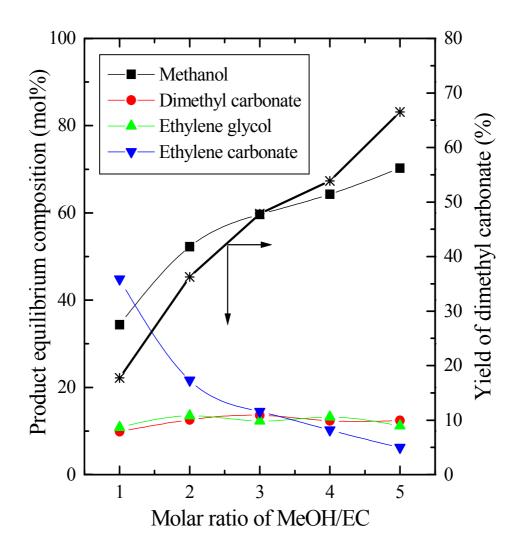
[그림 3-3] 평형조성과 DMC 수율에 미치는 반응온도의 영향 (촉매: KOH, 압력: Autogeneous)

[그림 3-4] 평형조성과 DMC 수율에 미치는 반응온도의 영향 (촉매: K₂CO₃, 압력: Autogeneous)

료인 에틸렌카보네이트의 녹는점이 약 40℃임을 감안하여 반응온도는 최소한 45-50℃이 상은 되어야 충분할 것이다.

4.2. 원료몰비의 영향

그림 3-5는 반응물의 몰비(MeOH/EC)가 에스테르교환반응에 미치는 영향을 나타내었다. 변화된 몰비의 범위는 0~5.0이었다. 반응온도는 100℃이고, 반응압력은 Autogeneous 압력만을 고려하였다. 반응에 투입된 촉매는 K_2CO_3 이었으며 촉매의 투입량은 전체반응물기준으로 1wt.%가 사용되었다. MeOH/EC 몰비=1.0에서는 아래 반응식의 양론비에 보인바와 같이 메탄올양이 이론값의 1/2이 공급되었다.


 $(CH_2O)_2CO + 2CH_3OH \rightarrow DMC + CH_2OH$

실제 반응결과로서, 초기 MeOH/EC의 조성비가 1.0이었으나 반응 후 메탄올의 조성이 더작아진 것을 볼 수 있다. 이것은 메탄올에 비해 상대적으로 반응되지 못한 EC의 양이 많음을 의미하며 메탄올의 양이 부족함을 확인해주고 있다. 따라서, MeOH/EC=1.0의 몰비조건에서 계산된 DMC 수율은 20%에도 미치지 못하고 있다. 아울러, EG와 DMC는 등몰로 생성되었음을 확인할 수 있다.

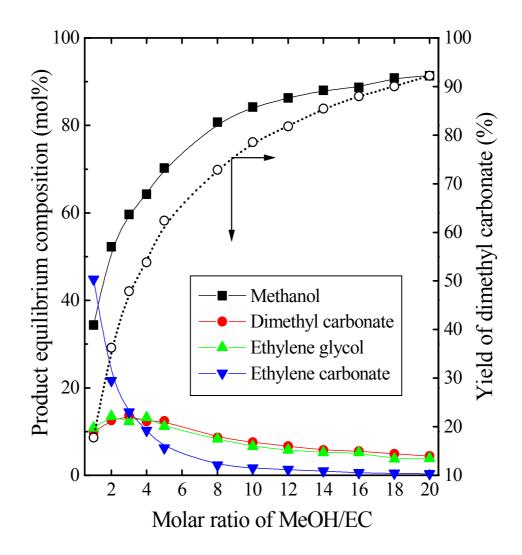
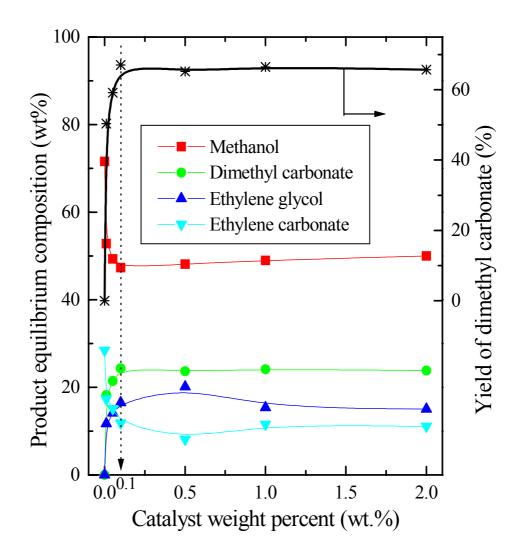

MeOH/EC의 몰비가 2.0으로 이론양론값이 충족된 경우 반응 후 EC의 조성이 메탄올의 1/2보다 훨씬 더 작아짐을 볼 수 있다. 따라서, DMC수율은 약 35%이상으로 급격히향상되었다. 이후 MeOH/EC의 몰비는 5.0까지 큰 폭으로 향상되어 약 65%값을 나타냈다. 전 변화구간에서 EG와 DMC는 등몰로 생성되었음을 확인할 수 있다

그림 3-6은 MeOH/EC의 몰비범위를 0부터 20.0까지 확대하여 반응에 미치는 몰비의영향을 나타내었다. MeOH/EC=5.0이상의 범위에서도 몰비증가에 따라 DMC 수율이 계속적으로 향상될 수 있는지에 관하여 보여주고 있다. 확대된 몰비범위에서 재접근하여 몰비변화에 따른 DMC수율 변화를 고찰하였다. 0~5.0범위에서DMC수율은 급격히 증가한반면 이후 몰비에서 증가율은 점차 감소하였다. 또한, 반응생성물의 평형조성은 설정된 MeOH/EC의 몰비가 증가함에 따라 메탄올과 에틸렌카보네이트의 평형조성차이가 급격히커지는 것을 확인할 수 있었다. 또한 DMC와 EG는 반응 양론상 등몰로 생성되므로 MeOH/EC 몰비와 상관없이 전 구간에서 거의 같은 양의 조성(몰%)를 유지하면서 생성됨을 확인 할 수 있다.

이미 언급된 바와 같이 DMC/EC의 몰비 변화구간이 1.0-5.0인 경우 DMC수율은 거의 선형적으로 증가하였으며 DMC/EC몰비가 5.0이상에서는 증가율이 감소하는 것으로 나타 났다. DMC수율은 이후 DMC/EC몰비=20.0까지 꾸준히 증가하여 는 약 92%이상의 수율 은 나타내었다. DMC수율은 DMC/EC몰비를 증가시킴으로 고수율 제조가 불가능한 것은 아니나 이것은 수치적 의미로 한정되며 실제 조업에서는 DMC/EC몰비=4.0~5.0 부근이 가장 경제적으로 타당할 것으로 판단된다.

[그림 3-5] 평형조성과 DMC수율에 미치는 MeOH/EC몰비의 영향(1) (촉매: K₂CO₃, 압력: Autogeneous, 온도: 100℃)



[그림 3-6] 평형조성과 DMC수율에 미치는 MeOH/EC몰비의 영향(2) (촉매: K₂CO₃, 압력: Autogeneous, 온도: 100℃)

4.3. 촉매함량의 영향

그림 3-7은 에스테르교환반응에 투입할 촉매의 최적함량을 조사한 그림이다. 가는 실 선들은 반응생성물들의 wt.%기준의 평형조성들이고 굵은 실선은 DMC 수율을 가리킨다. 그리고 X축에 표시된 함량은 초기 반응물기준으로 산출된 wt.%값들이다. 반응온도는 100℃이고 공급된 원료몰비는 MeOH/EC=5.0을 적용하였다. 촉매는 K₂CO₃를 투입하였으 며 촉매의 함량은 0-2.0wt.%의 범위에서 변화시겼다. 촉매를 넣지 않고 반응시킨 경우 메탄올과 에틸렌카보네이트의 에스테르교환반응은 전혀 일어나지 않았다. 따라서, 이 반 응은 100℃ 반응온도 조건에서 촉매에 전적으로 의존하는 반응임을 알 수 있다. 초기에 임의로 설정되었던 촉매함량은 1wt.%이었으며 이를 기준으로 촉매함량을 증가시키거나 감소시키면서 반응실험을 진행하였다. 촉매함량을 0.01, 0.05, 0.1, 0.5, 1,0, 2.0wt.%로 변 화시키면서 그 외 동일한 반응조건의 실험을 반복하였다. 촉매함량이 0~0.1wt%까지 DMC수율이 점차 증가하였음을 볼 수 있다. 0.1wt%이상에서는 DMC수율이 일정한 값을 나타내어 이미 언급된 바와 같이 약 65%의 DMC수율을 보였다. 반응생성물의 평형조성 은 wt.%를 기준으로 나타냈다. 0.1wt.%까지 반응물(MeOH와 EC)의 조성이 급격히 감소 됨을 볼 수 있다. 또한 DMC의 평형조성(wt.%)이 EG의 평형조성(wt.%)보다 다소 큰 이 유는 분자량이 각각 90g/mol과 62g/mol으로 DMC가 다소 큰 것과 두 생성물이 이론상 등몰생성된다는 사실과 관계있는 것으로 판단된다. 따라서, 주어진 반응조건에서 촉매함 량은 약 0.1wt%로 충분함을 알 수 있다.

표 3-4 ~ 표 3-11은 여러 가지 촉매를 사용한 에스테르교환반응에 대한 자세한 실험조건 및 자료들이 기록되어있다. 각 반응에서의 반응온도 및 autogeneous압력등의 실험조건들과 GC자료를 처리하여 촉매활성을 평가한 일련의 과정들이 상세히 정리되어 있다.

[그림 3-7] 평형조성과 DMC수율에 미치는 촉매 무게함량의 영향 (촉매: K₂CO₃, 압력: Autogeneous, 온도: 100℃)

< 표 3-4 > KOH를 촉매로 사용한 에스테르교환반응 결과

Exan	nple	LH101	LH102	LH103	LH104
Cata	lyst	КОН	КОН	КОН	КОН
Catalyst percent	weight (wt%)	1	1	1	1
D	catalyst	0.6	0.6	0.6	0.6
Reactant (g)	MeOH	26.5	26.5	26.5	26.5
	EC	35.8	35.8	35.8	35.8
Molar of MeC	ratio DH/EC	2	2	2	2
Temper	ature(℃)	r.t.	60	80	100
Pressur	e(psig)	0	6	16	38
	МеОН	34.73	32.65	34.25	34.73
GCarea%	DMC	18.38	18.31	17.38	16.19
GCarca/0	EG	14.19	15.74	15.82	14.59
	EC	32.70	1 1 0.6 0.6 26.5 26.5 35.8 35.8 2 2 60 80 6 16 32.65 34.25 18.31 17.38 15.74 15.82 33.30 32.55 26.91 (48.11) 28.37 (50.00) 22.11 (14.15) 21.09 (12.96) 17.33 (16.04) 17.50 (15.74) 33.65 (21.70) 33.05 (21.30) 16.42 (0.51) 17.30 (0.54) 13.49 (0.15) 12.86 (0.14) 10.57 (0.17) 10.68 (0.17) 20.52 (0.23) 20.16 (0.23) 40.25 37.03	34.49	
	МеОН	28.78 (50.93)	26.91 (48.11)	28.37 (50.00)	28.89 (50.93)
wt%	DMC	22.31 (13.89)	22.11 (14.15)	21.09 (12.96)	19.73 (12.04)
(mol%)	EG	15.70 (13.89)	17.33 (16.04)	17.50 (15.74)	16.21 (14.81)
	EC	33.21 (21.30)	33.65 (21.70)	33.05 (21.30)	35.17 (22.22)
	MeOH	17.55 (0.55)	16.42 (0.51)	17.30 (0.54)	17.62 (0.55)
g	DMC	13.61 (0.15)	13.49 (0.15)	12.86 (0.14)	12.03 (0.13)
(mol)	EG	9.58 (0.15)	10.57 (0.17)	10.68 (0.17)	9.89 (0.16)
	EC	33.21 (0.23)	20.52 (0.23)	20.16 (0.23)	21.45 (0.24)
МеОН со	onversion	36.12	40.25	37.03	35.86
EC con	version	39.58	38.77	39.87	36.00
DMC Y	eild(%)	39.69	39.34	37.52	35.10

^{}** GC calibration factor: MeOH: 1.0000, DMC: 1.4648, EG: 1.3356, EC: 1.2257 (Ex. GC area% × factor = wt%)

< 표 3-5 > K₂CO₃를 촉매로 사용한 에스테르교환반응 결과

Exan	nple	LH105	LH106	LH107	LH108	LH109	LH110
Cata	Catalyst		K ₂ CO ₃	K ₂ CO ₃	K ₂ CO ₃	K ₂ CO ₃	K ₂ CO ₃
Catalyst percent		1	1	1	1	1	1
5	catalyst	0.6	0.6	0.6	0.6	0.6	0.6
Reactant (g)	MeOH	26.5	26.5	26.5	26.5	26.5	26.5
(8)	EC	36.2	36.2	36.2	36.2	36.2	36.2
Molar of MeC		2	2	2	2	2	2
Temper	ature(℃)	r.t.	60	80	100	120	140
Pressur	e(psig)	0	6	14	53	94	>200
	MeOH	34.25	34.19	33.13	36.28	36.59	38.3
CCoroo9/	DMC	17.58	17.48	17.63	16.76	15.75	15.57
GCarea%	EG	13.2	13.2	14.65	13.43	12.48	11.89
	EC	34.97	35.12	34.59	33.53	35.18	34.24
	МеОН	28.42 (50.47)	28.38 (50.47)	27.40 (49.06)	30.27 (52.25)	30.63 (53.15)	32.20 (55.11)
wt%	DMC	21.37 (13.08)	21.25 (13.08)	21.36 (13.21)	20.48 (12.61)	19.31 (11.71)	19.17 (11.56)
(mol%)	EG	14.63 (13.08)	14.63 (13.08)	16.18 (15.09)	14.96 (13.51)	13.95 (12.61)	13.35 (11.56)
	EC	35.57 (23.36)	35.73 (23.36)	1 1 1 0.6 0.6 0.6 26.5 26.5 26.5 36.2 36.2 36.2 2 2 2 80 100 120 14 53 94 33.13 36.28 36.59 17.63 16.76 15.75 14.65 13.43 12.48 34.59 33.53 35.18 27.40 30.27 30.63 (49.06) (52.25) (53.15) 21.36 20.48 19.31 (13.21) (12.61) (11.71) 16.18 14.96 13.95 (15.09) (13.51) (12.61) 35.06 34.29 36.10	36.10 (22.52)	35.28 (21.78)	
	MeOH	17.34 (0.54)	17.31 (0.54)				39.60 (1.24)
g	DMC	13.04 (0.14)	12.96 (0.14)				23.58 (0.26)
(mol)	EG	8.93 (0.14)	8.93 (0.14)				16.42 (0.26)
	EC	21.70 (0.25)	21.80 (0.25)		42.17		43.39 (0.49)
МеОН со	nversion	37.22	37.32				28.10
EC con	version	35.00	34.70	35.93	37.91	34.63	36.11
DMC Y	eild(%)	38.19	37.98	38.16	36.27	34.20	33.95

[#] GC calibration factor: MeOH: 1.0000, DMC: 1.4648, EG: 1.3356, EC: 1.2257 (Ex. GC area% \times factor = wt%)

< 표 3-5 > K₂CO₃를 촉매로 사용한 에스테르교환반응 결과(계속)

Example		LH111	LH108	LH112	LH113	LH114
Cata	llyst	K ₂ CO ₃	K ₂ CO ₃			
Catalyst percent		1	1	1	1	1
D	catalyst	1.3	1.2	1.17	1.13	1.1
Reactant (g)	MeOH	35.9	52.1	61.3	67.4	71.5
(8)	EC	98.6	70.9	56.3	46.6	39.3
Molar of Me0		1	2	3	4	5
Temper	rature(℃)	100	100	100	100	100
Pressur	e(psig)	52	53	40	46	58
	MeOH	20.39	36.28	47.68	52.25	59.95
CCamaa0/	DMC	11.05	16.76	18.47	17.86	18.03
GCarea%	EG	9.23	13.43	13.26	16.83	12.87
	EC	59.32	33.53	20.59	13.07	9.16
	MeOH	16.77 (34.48)	30.27 (52.25)	36.98 (59.65)	42.34 (64.26)	49.00 (70.25)
wt%	DMC	13.31 (9.85)	20.48 (12.61)	23.44 (13.60)	22.51 (12.34)	24.12 (12.39)
(mol%)	EG	10.14 (10.84)	14.96 (13.51)	15.02 (12.28)	16.64 (13.19)	15.36 (11.16)
	EC	59.79 (44.83)	34.29 (21.62)	24.56 (14.47)	K ₂ CO ₃ 1 1.13 67.4 46.6 4 100 46 52.25 17.86 16.83 13.07 42.34 (64.26) 22.51 (12.34) 16.64	11.52 (6.20)
	MeOH	22.55 (0.7)	37.23 (1.16)	43.49 (1.36)		54.30 (1.70)
g	DMC	17.90 (0.20)	25.19 (0.28)	27.56 (0.31)		26.72 (0.30)
(mol)	EG	13.63 (0.22)	18.41 (0.30)	17.66 (0.28)		17.02 (0.27)
	EC	80.41 (0.91)	42.17 (0.48)	28.88 (0.33)	21.10	12.76 (0.15)
МеОН со	onversion	37.18	32.41	29.06	28.39	24.06
EC con	version	18.44	37.91	48.70	54.73	67.53
DMC Y	eild(%)	17.75	36.27	47.87	53.85	66.48

[#] GC calibration factor: MeOH: 1.0000, DMC: 1.6363, EG: 1.4605, EC: 1.5381 (Ex. GC area% \times factor = wt%)

< 표 3-5 > K₂CO₃를 촉매로 사용한 에스테르교환반응 결과(계속)

Exam	ple	LH119	LH118	LH117	LH115	LH114	LH116
Cataly	Catalyst		K ₂ CO ₃	K ₂ CO ₃	K ₂ CO ₃	K ₂ CO ₃	K ₂ CO ₃
Catalyst v		0.01	0.05	0.1	0.5	1	2
Б	catalyst	0.01	0.05	0.11	0.5	1.1	2.2
Reactant (g)	MeOH	71.5	71.5	71.3	71.4	71.5	71.4
.07	EC	39.3	39.3	39.2	39.3	39.3	39.3
Molar r of MeOI		5	5	5	5	5	5
Tempera	ture(℃)	100	100	100	100	100	100
Pressure	(psig)	45	52	48	102	58	60
	MeOH	63.48	60.23	58.32	58.98	59.95	60.92
GCarea%	DMC	13.4	16.01	18.31	17.72	18.03	17.76
GCarca/0	EG	9.61	11.79	13.93	16.86	12.87	12.54
	EC	13.51	11.97	9.44	6.44	9.16	8.78
	МеОН	52.80 (73.75)	49.35 (70.75)	47.36 (68.81)	48.15 (69.01)	49.00 (70.25)	50.02 (71.19)
wt%	DMC	18.24 (9.06)	21.46 (10.94)	24.33 (12.57)	23.67 (11.98)	24.12 (12.39)	23.86 (11.94)
(mol%)	EG	11.67 (8.42)	14.11 (10.44)	16.52 (12.39)	20.10 (14.88)	15.36 (11.16)	15.04 (11.11)
	EC	17.28 (8.78)	0.05 0.1 0.5 1 0.05 0.11 0.5 1.1 71.5 71.3 71.4 71. 39.3 39.2 39.3 39. 5 5 5 5 100 100 100 100 52 48 102 58 60.23 58.32 58.98 59.9 16.01 18.31 17.72 18.0 11.79 13.93 16.86 12.8 11.97 9.44 6.44 9.1 49.35 47.36 48.15 49.0 (70.75) (68.81) (69.01) (70.2 21.46 24.33 23.67 24.1 (10.94) (12.57) (11.98) (12.3 14.11 16.52 20.10 15.3 (10.44) (12.39) (14.88) (11.1 15.08 11.79 8.09 11.5 (7.86) (6.23) (4.13) (6.2 <td>11.52 (6.20)</td> <td>11.09 (5.76)</td>	11.52 (6.20)	11.09 (5.76)		
	МеОН	58.45 (1.83)				54.30 (1.70)	55.37 (1.73)
g	DMC	20.19 (0.22)				26.72 (0.30)	26.41 (0.29)
(mol)	EG	12.92 (0.21)		18.26		17.02 (0.27)	16.65 (0.27)
	EC	19.13 (0.22)				12.76 (0.15)	12.27 (0.14)
MeOH con	version	18.25	23.53	26.60	25.35	24.06	22.45
EC conve	ersion	51.19	57.47	66.76	77.22	67.53	68.77
DMC Yes	ld(%)	50.36	59.17	67.06	65.19	66.48	65.71

^{}** GC calibration factor: MeOH: 1.0000, DMC: 1.6363, EG: 1.4605, EC: 1.5381 (Ex. GC area% × factor = wt%)

< 표 3-6 > 여러 가지 촉매로 사용한 에스테르교환반응 결과

Example		LH104	LH108	LH120	LH121	LH122
Cataly	rst	КОН	K ₂ CO ₃	LiCl	LiBr	KI/MnCl ₂
Catalyst v	veight wt%)	1	1	1	1	1
D	catalyst	0.6	0.6	1.238	1.238	1.238
	MeOH	26.5	26.5	52.2	52.2	52.2
.5.	EC	35.8	36.2	71.5	71.6	71.6
		2	2	2	2	2
Tempera	ture(℃)	100	100	100	100	100
Pressure((psig)	38	53	52	59	52
	МеОН	34.73	36.28	32.91	38.39	33.08
CCaroa%	DMC	16.19	16.76	16.95	10.59	18.26
GCarea/0	EG	14.59	13.43	16.55	10.51	14.89
	EC	34.49	33.53	33.59	40.51	33.77
	МеОН	28.89 (50.93)	30.27 (52.25)	24.11 (44.45)	28.78 (51.10)	24.21 (44.81)
wt%	DMC	19.73 (12.04)	20.48 (12.61)	20.32 (13.32)	12.99 (8.20)	21.87 (14.39)
(mol%)	EG	16.21 (14.81)	14.96 (13.51)	17.71 (16.85)	11.51 (10.54)	15.91 (15.21)
Reactant (g) Reactant (g) Reactant (g) MeOH EC Molar ratio of MeOH/EC Temperature(°C) Pressure(°C) Pressure(°C) Pressure(°C) MeOH DMC EG EC MeOH DMC EG EC MeOH DMC EG EC MeOH EG EC MeOH DMC EG EC MeOH DMC EG EC MeOH DMC EG EC MeOH DMC EG EC MeOH DMC	35.17 (22.22)	34.29 (21.62)	37.85 (25.38)	46.72 (30.16)	38.01 (25.59)	
	МеОН	17.62 (0.55)	37.23 (1.16)	29.83 (0.93)	35.63 (1.11)	29.97 (0.94)
g	DMC	12.03 (0.13)	25.19 (0.28)	25.14 (0.28)	16.08 (0.18)	27.07 (0.30)
(mol)	EG	9.89 (0.16)	18.41 (0.30)	21.91 (0.35)	14.25 (0.23)	19.70 (0.32)
	EC	21.45 (0.24)	42.17 (0.48)	46.83 (0.53)	57.83 (0.66)	47.06 (0.53)
MeOH con	version	35.86	32.41	42.86	31.74	42.59
EC conve	ersion	36.00	37.91	34.51	19.23	34.28
DMC Yei	ld(%)	35.10	36.27	34.38	21.96	36.97

^{}** GC calibration factor: MeOH: 1.0000, DMC: 1.6363, EG: 1.4605, EC: 1.5381 (Ex. GC area% × factor = wt%)

< 표 3-6 > 여러 가지 촉매로 사용한 에스테르교환반응 결과(계속)

Exam	Example		LH124	LH125	LH126	LH127
Cataly	rst	CaCl ₂	ZnCl ₂	MnCl ₂	Ca(OH) ₂	LiOH
Catalyst percent(weight wt%)	1	1	1	1	1
D	catalyst	1.2	1.2	1.2	1.2	1.2
	MeOH	52.2	71.6	52.2	52.2	52.2
J	EC	71.5	71.5	71.6	71.6	71.6
		2	2	2	2	2
Tempera	ture(℃)	100	100	100	100	100
Pressure	(psig)	65	68	60	40	66
	МеОН	40.47	40.12	35.69	42.54	33.34
CCaroa%	DMC	12.87	12.68	15.93	8.34	17.37
GCarea/0	EG	11.36	11.66	13.76	7.84	17
	EC	35.31	35.54	34.62	41.27	32.19
	МеОН	30.56 (53.06)	30.27 (52.68)	26.42 (47.78)	32.44 (55.69)	24.55 (44.97)
wt%	DMC	15.90 (9.82)	15.65 (9.69)	19.29 (12.41)	10.41 (6.35)	20.87 (13.59)
(mol%)	EG	12.53 (11.23)	12.85 (11.54)	14.88 (13.89)	8.73 (7.74)	18.23 (17.23)
	Catalyst 1.2	48.41 (30.22)	36.35 (24.21)			
	MeOH				40.17 (1.26)	30.39 (0.95)
g	DMC				12.89 (0.14)	25.83 (0.29)
(mol)	EG			18.42 (0.30)	10.81 (0.17)	22.57 (0.36)
	EC				59.94 (0.68)	45.00 (0.51)
MeOH con	version	27.52	28.22	37.35	23.05	41.77
EC conve	ersion	29.09	28.70	31.85	16.29	37.15
DMC Ye	ild(%)	26.88	26.46	32.62	17.60	35.28

^{}** GC calibration factor: MeOH: 1.0000, DMC: 1.6363, EG: 1.4605, EC: 1.5381 (Ex. GC area% × factor = wt%)

< 표 3-6 > 여러 가지 촉매로 사용한 에스테르교환반응 결과(계속)

Examp	Example		LH124	LH125	LH126	LH127
Cataly	rst	Al(OH) ₃	NaOH	Ba(OH) ₂	Mg(OH) ₂	CuCl ₂
Catalyst v		1	1	1	1	1
D	catalyst	1.2	1.2	1.2	1.2	1.2
Reactant (g)	MeOH	52.2	52.2	52.2	52.2	52.2
	EC	71.5	71.6	71.6	71.6	71.6
Molar r of MeOF		2	2	2	2	2
Temperat	ture(℃)	100	100	100	100	100
Pressure(psig)	35	61	56	52	35
	MeOH	49.73	33.98	50.4	49.76	53.23
GCarea%	DMC	1.13	16.07	1.25	3.27	×
GCarea/0	EG	0.62	16.63	1.24	2.38	×
	EC	48.53	33.32	47.1	44.59	46.77
	МеОН	39.12 (63.76)	25.02 (45.61)	39.78 (64.28)	39.13 (63.47)	42.53 (67.05)
wt%	DMC	1.45 (0.84)	19.36 (12.55)	1.61 (0.93)	4.21 (2.43)	×
(mol%)	EG	0.71 (0.60)	17.88 (16.83)	1.43 (1.19)	2.73 (2.29)	×
	EC	58.72 (34.80	37.74 (25.01)	57.18 (33.60)	53.93 (31.81)	57.47 (32.95)
	МеОН	48.43 (1.51)	30.95 (0.97)	49.21 (1.54)	48.40 (1.51)	52.65 (1.65)
g	DMC	1.45 (0.02)	23.95 (0.27)	2.00 (0.02)	5.20 (0.06)	×
(mol)	EG	0.71 (0.01)	22.12 (0.36)	1.77 (0.03)	3.38 (0.05)	×
	EC	58.72 (0.83)	46.68 (0.53)	70.73 (0.80)	66.71 (0.76)	71.15 (0.81)
MeOH con	version	7.23	40.60	5.55	7.10	0
EC conve	ersion	2.52	34.81	1.22	6.83	0
DMC Yei	ld(%)	2.46	32.71	2.73	7.11	0

^{}** GC calibration factor: MeOH: 1.0000, DMC: 1.6363, EG: 1.4605, EC: 1.5381 (Ex. GC area% × factor = wt%)

< 표 3-6 > 여러 가지 촉매로 사용한 에스테르교환반응 결과(계속)

Example		LH123	LH124	LH125	LH126
Catalyst		Cu(OH) ₂	NaCl	MgCl ₂	AlCl ₃
Catalyst percent	Catalyst weight percent(wt%)		1	1	1
Reactant (g)	catalyst	1.2	1.2	1.2	1.2
	MeOH	52.2	52.2	52.2	52.2
.0	EC	71.5	71.6	71.6	71.6
	Molar ratio of MeOH/EC		2	2	2
Temper	Temperature($^{\circ}$ C)		100	100	100
Pressure	Pressure(psig)		31	100	65
	MeOH	49.42	34.50	33.2	46.90
GCarea%	DMC	3.45	15.68	14.12	6.35
GCarea/0	EG	2.36	12.65	19.97	4.27
	EC	44.8	37.17	32.72	42.48
	МеОН	38.79 (63.15)	25.40 (46.65)	24.45 (44.40)	36.39 (60.46)
wt%	DMC	4.43 (2.56)	18.89 (12.34)	17.01 (10.99)	8.06 (4.76)
(mol%)	EG	2.71 (2.27)	13.60 (12.90)	21.48 (20.13)	4.84 (4.15)
	EC	54.08 (32.02)	42.10 (28.11)	37.06 (24.48)	50.70 (30.63)
	МеОН	48.02 (1.50)	31.45 (0.98)	30.27 (0.95)	45.06 (1.41)
g	DMC	5.48 (0.06)	23.39 (0.26)	21.06 (0.23)	9.98 (0.11)
(mol)	EG	3.35 (0.05)	16.84 (0.27)	26.59 (0.43)	5.59 (0.10)
	EC	66.95 (0.76)	52.12 (0.59)	45.88 (0.52)	62.77 (0.71)
MeOH conversion		8.01	39.75	42.02	13.68
EC conversion		6.49	27.21	35.92	12.33
DMC Yeild(%)		7.49	31.94	28.76	13.63

^{}** GC calibration factor: MeOH: 1.0000, DMC: 1.6363, EG: 1.4605, EC: 1.5381 (Ex. GC area% × factor = wt%)

4.4. 여러 가지 촉매들의 활성조사 및 에스테르교환반응 1단계반응

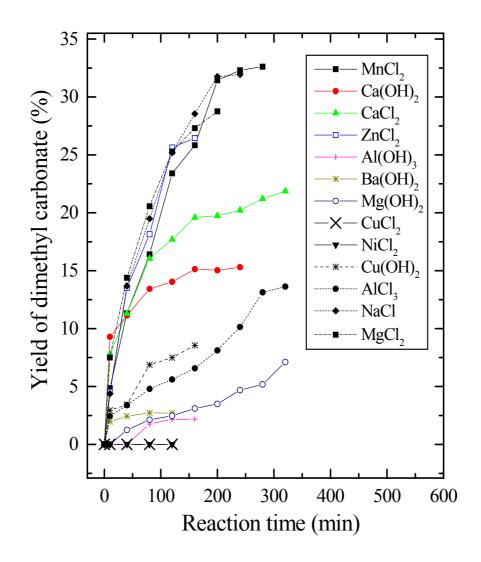

(EO + CO₂ → EC) 우수촉매와의 비교

그림 3-8은 EC와 MeOH로부터 DMC를 제조하는데 효과적인 촉매를 찾기 위한 예비 단계로서 여러 가지 종류의 Hydroxide 및 Chloride 계열의 금속화합물 촉매들의 반응성 을 디메틸카보네이트의 수율측면에서 서로 비교한 결과이다. 이때 반응온도는 100℃, MeOH/EC 원료몰비는 2:1, 촉매의 양은 반응물 초기 투입량 기준으로 1wt.%등으로 모든 경우에 대하여 동일한 조건하에서 실험하였다. Hydroxide계열의 촉매가 Chloride계열 촉 매보다 성능이 대체적으로 우수하였으며 따라서 본 에스테르교환반응 2단계는 염기성 촉 매가 효과적인 것으로 판단된다.


MnCl₂, NaCl, MgCl₂ ZnCl₂등이 상대적으로 비교적 양호한 실험결과를 보여주고 있으나 대체적으로 DMC 수율이 낮은 범위를 벗어나지 못하고 있다.

그림 3-9는 EO와 CO2로부터 EC를 제조하는 데 비교적 효과적인 것으로 평가된 LiCl, LiBr, KI/MnCl₂ (몰비 2:1)등의 촉매들을 LiOH, KOH, K₂CO₃ 등의 촉매와 활성을 비교한 결과이다. 이 실험은 에스테르교환반응 2단계의 반응원료를 1단계로부터 연속적으로 공급받는 경우 1단계용 촉매를 2단계에서 그대로 사용할 수 있는지에 대하여 조사한 것이다. LiCl, LiBr, KI/MnCl₂ 촉매들이 반응시간의 경과와 더불어 수율이 완만하게 증가한데 비하여 LiOH, KOH, K₂CO₃ 등의 촉매는 반응의 시작과 동시에 바로 평형에 도달하는 것을 관찰할 수 있었다. LiCl, LiBr, KI/MnCl₂ 촉매들의 경우 반응평형에 도달하는데 걸리는 시간은 데체적으로 3시간 내지는 4시간이상의 시간이 소요되는 것으로 조사되었다.

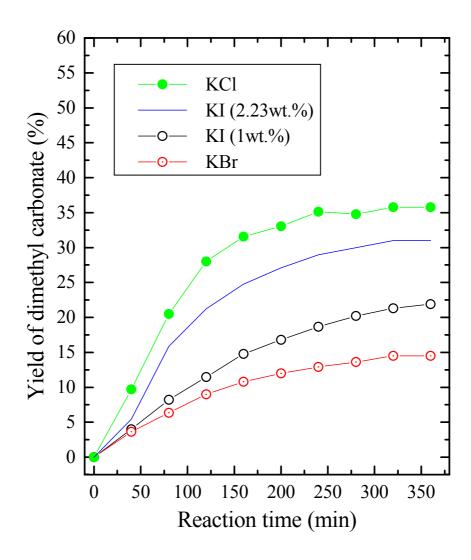
실험결과에서 보듯이 LiCl, LiBr, MnCl₂/KI 촉매들은 KOH, K₂CO₃등의 촉매들에 비해 반응속도면에서 성능이 상당히 떨어지나 최종적인 디메틸카보네이트의 수율은 LiBr을 제 외하고 대부분 비슷한 수준에 도달하는 것으로 나타났다.

[그림 3-8] 에스테르교환반응에 대한 여러 가지 촉매들의 활성조사 (온도:100℃, 압력:Autogeneous, MeOH/EC=2/1, 촉매함량: 1wt.%)

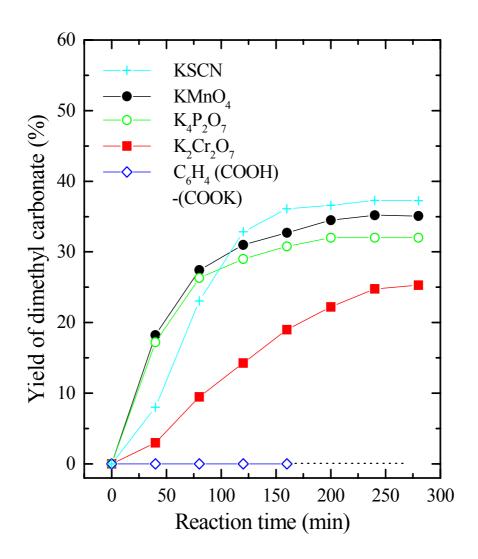
[그림 3-9] 에스테르교환반응에 대한 여러 가지 촉매들의 활성조사 (EC합성반응[EO+CO₂→EC]을 위한 우수촉매의 적용) (온도:100℃, 압력:Autogeneous, MeOH/EC=2/1, 촉매함량: 1wt.%)

4.5. 포타슘(K)계열 촉매활성 검토

포타슘이 함유된 화합물로서 KOH와 K_2CO_3 는 모두 에스테르교환반응에 고활성을 나타내었다. 포타슘이 함유된 다른 화합물들의 촉매활성을 검토하고자 하였다.


그림 3-10은 여러 가지 할로겐원소와 결합된 포타슘할로겐 화합물(KX, X=Cl, Br, I) 들의 활성을 비교하였다. 반응온도는 100℃이고 반응압력은 autogeneous 압력만을 그대로 적용하였다. 원료몰비는 이론양론비인 MeOH/EC=2.0 조건을 사용하였으며 촉매량은 초기반응물 기준으로 1.0 wt.%를 투입하였다. 대부분의 KX는 평형에 도달하는데 4시간이상이 소요되었다. 실험결과 KCl이 KBr과 KI에 비하여 높은 촉매활성을 보였다. 물론 KOH, K₂CO₃와 같은 균일계 촉매에 비해 반응속도면에서 성능은 상당히 떨어지는 결과이지만 평형에서의 DMC 수율은 거의 동등한 값을 나타내었다. KCl, KBr, KI 모두 같은 wt.%가 적용되었으므로 KI의 경우 KCl 보다 몰% 측면에서 적은 양 이 투입된 것으로볼 수 있으므로 KI를 몰%를 기준으로 KCl와 같은 양을 투입하여 재실험하였다. 단일실선으로 표시된 것이 KCl과 등몰조건의 KI (2.23wt%)을 가리킨다. 마찬가지로 동일한 mol%에서도 KI가 KCl의 활성에 미치지 못했다. KBr의 경우 KI보다 높은 mol%를 갖음에도 불구하고 활성이 낮았으므로 동일한 mol%에 대한 결과를 고려하지 않았다.

일반적으로 할로겐화합물은 할로겐원소의 반응성을 고려하여 I >Br >Cl 의 순서로 반응성정도를 나타내는 것으로 알려져 있다. 그러나 본 실험에서는 이론적인 예측결과와 달리 KCl의 경우에서 가장 좋은 결과를 보였다.


이는 본 반응실험에서 사용된 반응물 (MeOH, EC)과 반응 후의 생성물 (DMC, EG), 그리고 촉매들의 상호작용이 반응에 영향을 미치는 것으로 예측된다. 각 촉매들에 대해서 반응물의 용매로서 역할도 중요한 인자중에 하나로 작용하는 것으로 판단되므로 각 반응물, 생성물들에 대한 촉매의 용해도에 관하여 세밀한 검토가 요구된다.

4.6. 포타슘(K) 함유화합물들의 활성비교

그림 3-11에서 포타슘이 함유된 화합물들의 촉매활성을 조사하였다. 앞서 실험과 같이 반응온도는 100℃이고 반응압력은 autogeneous압력이 유지되었고 원료몰비는 MeOH/EC=2.0 이었다. 반응결과 KSCN(티오시안산칼륨)과 KMnO₄(과망간산칼륨), K₄P₂O¬(과산화인산칼륨)등이 양호한 활성을 나타내었다. 그러나, 대부분 3-4시간의 평형도달시간이 요구되었다. 조사된 몇가지 포타슘화합물들은 대부분 과량의 산소를 함유하는 과산화물들이며 그리고 독성이 있지만 여러 가지 반응에 효과적으로 사용되어온 시안계열을 포함하고 있다. 마찬가지로 반응결과는 사용된 일부촉매들에서는 균일계촉매의반응결과에 도달하였으나 반응속도면에서 상당히 느린 것으로 평가된다. 따라서 과산화물계열이나 시안계열도 주목할 만한 결과를 나타내지는 못하였다.

[그림 3-10] 에스테르교환반응에 대한 KX (X:7B원소)촉매의 활성조사 (온도:100℃, 압력:Autogeneous, MeOH/EC=2/1, 촉매함량: 1wt.%)

[그림 3-11] 에스테르교환반응에 대한 여러 가지 포타슘화합물의 촉매 활성조사 (온도:100℃, 압력:Autogeneous, MeOH/EC=2/1,촉매함량:1wt.%)

4.7. 속도론 관점에서 촉매활성비교

지금까지의 실험결과에서 알 수 있듯이 KOH, K₂CO₃, LiOH, NaOH에서 가장 우수한 결과를 나타내었다. 일반적인 반응조건, 예를들면 100℃의 반응온도, 1wt.%의 촉매 함량의 조건에서는 각 촉매들의 활성의 우위를 판단할 수 없을 정도로 비슷한 양상을 나타내었다. 따라서 반응온도와 촉매량을 현저히 낮추어 반응속도의 차이를 인지하고자 하였다. 표 3-12은 앞서 언급된 몇가지 알카리금속 촉매들을 사용한 에스테르교환반응 실험결과이다. 반응온도는 상온(25℃)이고 반응압력은 *in situ*분석을 위하여 질소가압을 하여 50 psig를 유지하였고 촉매무게는 0.1g (0.08 wt%) 이었다. 공급원료의 몰비는 MeOH/EC=4.0이었다. 반응시간은 모든 촉매에서 1시간으로 고정시켰다. 단, KOH에 한해서 2시간까지 시간별로 관찰하였다. 실험결과 LiOH가 가장 우수한 EC전환율과 DMC수율을 나타내었다. 다음은 사용된 촉매들의 반응속도 순서를 보여 주고있다.

$$LiOH > NaOH > KOH > K_2CO_3$$

같은 반응시간 후, LiOH의 경우 61.52의 DMC 수율을 나타내었다. 물론 선택도는 대부분의 경우 거의 97% 내지 99%이상의 높은 선택도를 나타내고 있다. 미분분석법을 이용하여 각 촉매반응에서의 반응속도를 비교하고자 하였다. 이에따라, 각 촉매반응에서의 반응차수와 속도상수들이 결정되었다. 본 에스테르교환 반응식은 E + 2M ⇌ G + D 이며 기본반응(Elementary reaction)으로 가정하면 반응속도식은 다음과 같다.

$$-r_E = k_{forward} C_E C_M^2 - k_{backward} C_G C_D$$
$$= k_{forward} (C_E C_M^2 - \frac{C_G C_D}{K})$$

여기서 E, M, G, D는 각각 Ethylene carbonate, Methanol, Ehtylene glycol, Dimethyl carbonate을 의미한다. 그리고 $K(=k_{forward}/k_{backrward})$ 는 정반응의 평형상수이다. 메탄올이 과량(MeOH/EC=10.0)으로 첨가되기 때문에 C_M^2 항은 상수가 된다.

그러므로

$$-r_E = k'_{forward} C_E - k_{backward} C_G C_D$$

$$= k'_{forward} (C_E - \frac{C_G C_D}{K'})$$

$$\Leftrightarrow 7 \mid k \mid k'_{forward} = k_{forward} C_M^2, \quad K' = k'_{forward} / k_{backward}$$

그림 3-12는 에틸렌카보네이트와 메탄올로부터 DMC합성에서 여러 가지 촉매를 이용하여 각 촉매에서의 에스테르 교환반응의 반응속도 $(-r_{\rm E})$ 를 비교한 그림이다. Excess 법과 미분분석법에 의하여 반응차수와 속도상수를 결정하기 위한 (dC_A/dt) 대 C_A 플롯이 표시되어있다. 반응온도는 25%이며 공급원료의 몰비는 Excess법에 따라

MeOH/EC=10.0이 적용되었다. 본 연구는 DMC합성을 위한 정반응에 초점을 맞추는 것을 고려하여, 정반응속도식은 다음과 같이 나타낼 수 있다.

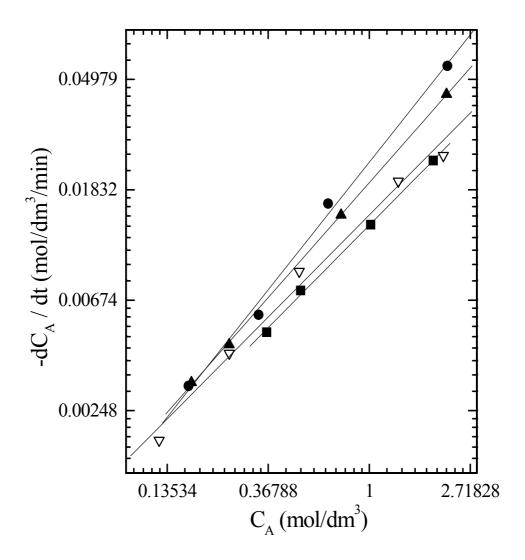
-
$$dC_E/dt = k_{forward}C_E^{\square}$$

양변에 자연로그를 취하면 위 식은

$$ln(-dC_E/dt) = lnk_E + alnC_E,$$

이 된다. 위 직선의 기울기는 반응차수가 되고 Y축절편은 반응속도 상수의 자연로그 값이 된다. 그림에서 $ln(-dC_E/dt)$ 대 lnC_E 플롯의 Regression을 거친 후, Y = -4.33508 + 0.92168 X의 직선방정식이 K_2CO_3 촉매에 대해서 얻어진다. 반응차수와 속도상수의 계산 결과는 다음과 같다: a=0.92, $k=0.0131[(dm^3/mol)^{-0.08}/min]$

KOH촉매의 경우 Y=-4.22828 + 0.92379 X의 식이 얻어졌다. 계산결과, a = 0.92, k = 0.01458 [(dm³/mol)^{-0.08}/min] 가 얻어졌다. NaOH촉매반응에서는 Y = -3.9357 + 1.0402 X의 방정식이 얻어졌다. 같은 방식으로 계산한 결과 a = 1.04, k = 0.0195 [(dm³/mol)^{0.04}/min]가 얻어졌다. LiOH촉매 또한 Y = -3.67365 + 1.21165 X의 방정식이 구해졌다. 반응차수와 속도상수를 계산한 결과 a=1.21, k=0.02538 [(dm³/mol)^{0.21}/min]가 각각 산출되었다. 앞의 계산된 자료들을 종합하면 에틸렌카보네이트와 메탄올을 이용한 에스테르교환반응은 에틸렌카보네이트에 관하여 일차반응임을 확인할 수 있다. 표 14는 각촉매반응(T=298K)에서의 속도파라미터 (a, k)를 보여주고 있다. 이상의 결과로보터, 염기성 알카리금속 촉매로서 LiOH가 가장 효과적인 것으로 판단된다.


본 실험에 사용된 촉매의 투입량은 mol%대신 wt%기준으로 적용되었다. 촉매의투입량이 반응물기준으로 동일한 mol%가 적용되었다면 표 13과 14에서 다른 결과를 나타낼 수 있다. 그러나 회분식 기초실험에서 평가된 우수한 촉매를 실제 에스테르교환반응의 연속식 실험장치에 적용할 경우 연속적인 촉매공급에서 생길 수 있는 문제점과 연관시키기 위하여 편의상 wt.%를 기준으로 적용하였다. 즉, 균일 촉매인 경우로서 촉매를연속적으로 공급하기위해서는 특정반응물과 촉매를 동시에 공급하여야 한다. 이것은 반응물과 촉매의 용해도 ([촉매g/반응물g]×100)와 밀접한 관계를 갖고 있다. 공급되는 원료에촉매가 얼마나 균일하게 많은 양이 용해될 수 있는가도 중요한 고려대상이 되기 때문이다. 따라서 분자량(몰수)에 관계없이 중량(wt%)을 기준으로 촉매투입량이 결정되었다.

< 표 3-7 > 에스테르교환반응에 사용된 KOH, NaOH, LiOH, K₂CO₃의 촉매활성비교 (온도: 25℃, 압력: 50psig(질소가압), 촉매함량: 0.088wt.%, 원료공급몰비: MeOH/EC=4.0)

촉매	반응시간(h)	전환율(%)		DMC 수율
		МеОН	Ethylene Carbonate	(%)
КОН	1	16.59	42.66	40.79
КОН	2	22.65	55.26	55.17
K ₂ CO ₃	1	13.30	33.99	33.81
LiOH	1	28.53	61.94	61.52
NaOH	1	27.17	56.70	55.12

 < 표 3-8 > KOH, NaOH, LiOH, K₂CO₃촉매를 사용한 에스테르교환반응에서의 속도 파라미터(k,a) (온도: 25℃, 압력: 50psig(질소가압), 촉매함량: 0.088wt.%, 원료공급몰비: MeOH/EC=4.0).

속도파라미터	КОН	NaOH	LiOH	K ₂ CO ₃
k (dm³/mol) ^{ű-1} /min	0.01458	0.0195	0.02538	0.0131
а	0.92	1.04	1.21	0.92

[그림 3-12] 여러 가지 촉매에서 에스테르교환반응에 대한 -(d*C*_A/dt) 대 *C*_A의 플롯(●:LiOH, ▲:NaOH, ▽:KOH, ■:K₂CO₃, 온도:25℃, 압력:50psig(질소가압), MeOH/EC=10/1, 촉매 함량:1wt.%)

4.8. DMC 합성반응의 평형조성 고찰

열역학적 이론에 따라 반응의 표준상태 특성변화는 다음과 같다.

$$\triangle H^{\circ} = \sum v_i \triangle H_{fi}^{\circ}$$
 [생성열] $\triangle G^{\circ} = \sum v_i \triangle G_{fi}^{\circ}$ [깁스 자유에너지] $-RT \ln K = \sum v_i G_i^{\circ} = \triangle G^{\circ}$

평형상수에 미치는 온도영향은 다음과 같이 표현된다.

$$H/RT = -T[\partial (G/RT)/\partial T]_{D}$$

표준상태에서 특성들은 온도만의 함수로 전미분형태를 취하므로

$$H_i^\circ = -RT^2 \left[d(G_i^\circ/RT) \right]/dT \rightarrow (표준상태 성분i식)$$
 $\Sigma v_i \triangle H_i^\circ = -RT^2 \left[d(\Sigma v_i \triangle G_{fi}^\circ/RT) \right]/dT$ $\triangle G^\circ/RT = -lnK$
$$\frac{d(lnK)}{dT} = \frac{\triangle H^\circ}{RT^2}$$

△H°가 온도에 무관하다고 가정하면

$$\ln\frac{K}{K_1} = -\frac{\triangle H^o}{R}(\frac{1}{T} - \frac{1}{T_1})$$

에스테르교환반응에서의 DMC 합성반응식은 다음과 같다.

$$(CH2O)2CO + 2CH3OH \rightarrow (CH3O)2CO + (CH2OH)2$$

	$\triangle H_f^{o}(kJ/gmol)$	$\triangle G_f^{\circ}(kJ/gmol)$	
Ethylene carbonate	-531.25	-461.54	
Methanol	-238.66	-166.27	
Dimethyle carbonate	-467.38	-338.28	
Ethylene glycol	-455.3	-324.45	

$$\begin{array}{lll} \textcircled{1} & \triangle H_{298}{}^{o} &=& \sum v_{i} H_{i}{}^{o} \\ &=& (-467.38) \ + \ (-455.3) - (-531.25) - 2(-238.66) \\ &=& 85.89 \ \text{kJ/mol} \\ \textcircled{2} & \triangle G_{298}{}^{o} &=& \sum v_{i} G_{i}{}^{o} \\ &=& (-338.28) \ + \ (-324.45) - (-461.54) - 2(-166.27) \\ \end{array}$$

= 131.35 kJ/mol

③
$$\ln K_{298} = \frac{-\triangle G_{298}^{\circ}}{RT} = \frac{-(131.35 \text{ J/mol})}{(8.314 \text{ J/mol} \cdot \text{k})(298.15 \text{K})} = -0.053$$
 $K_{298} = 0.948$

$$\textcircled{4} \ \ln \frac{K_{373.15}}{K_{298.15}} = \frac{-\,(85.89\,\mathrm{J/mol})}{8.314\,\mathrm{J/mol}\cdot\mathrm{K}} [\,\frac{1}{373.15} - \frac{1}{298.15}\,] = \ 0.00696$$

$$K_{373.15} = 1.00698 \times K_{298} = 0.9546$$

$$y_{i} = \frac{n_{i}}{n} = \frac{n_{io} + \nu_{i}\varepsilon}{n_{o} + \nu_{\varepsilon}}$$

$$y_{EC} = \frac{1 - \varepsilon}{3 - \varepsilon}, \qquad y_{MeOH} = \frac{2 - 2\varepsilon}{3 - \varepsilon}, \qquad y_{DMC} = y_{EG} = \frac{\varepsilon}{3 - \varepsilon}$$

$$K = \frac{y_{DMC} \cdot y_{EG}}{y_{EC} \cdot y_{CH3OH}^{2}}$$

$$K = \frac{\frac{\varepsilon}{(3 - \varepsilon)} \cdot \frac{\varepsilon}{(3 - \varepsilon)}}{(\frac{1 - \varepsilon}{3 - \varepsilon}) \cdot (\frac{2 - 2\varepsilon}{3 - \varepsilon})^{2}}$$

$$= \frac{\varepsilon^{2} \cdot (3 - \varepsilon)}{4(1 - \varepsilon)^{3}}$$

K=0.9546 ϵ =0.47179

(평형 몰조성)

EC/MeOH/DMC/EG = 20.89 /41.79 /18.66 /18.66 (반응온도 100℃) 이론적인 EC 전환율: 37.32% 선택도 100%가정하면 DMC 수율은 37.32%

위 계산결과에서 얻어진 DMC의 이론수율은 반응온도 100 °C, MeOH/EC=2.0에서 실시한에스테르교환반응의 실제 DMC수율의 실험값인 약 36-37%에 거의 근접한 값을 나타내었다. 따라서, KOH, K₂CO₃등의 촉매에 의한 반응평형은 거의 이론평형수준에 도달한것이라고 판단된다.

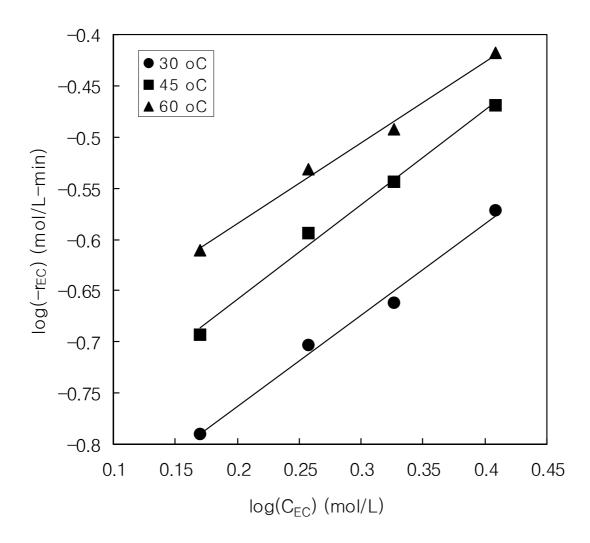
5. 반응속도론의 고찰

균일계 촉매를 이용한 에스테르교환반응은 빠른 반응속도를 나타내며, 상업적으로 도 경쟁력이 있다. 특히, KOH는 낮은 제조 단가에 비해서 높은 효율을 보이므로, 실제 공정에 이용될 수 있는 가능성이 매우 높다. 하지만 KOH 촉매를 이용하여, DMC를 제조하는 에스테르교환반응에 대한 자세한 반응속도연구는 거의 이루어지지 않은 실정이다.

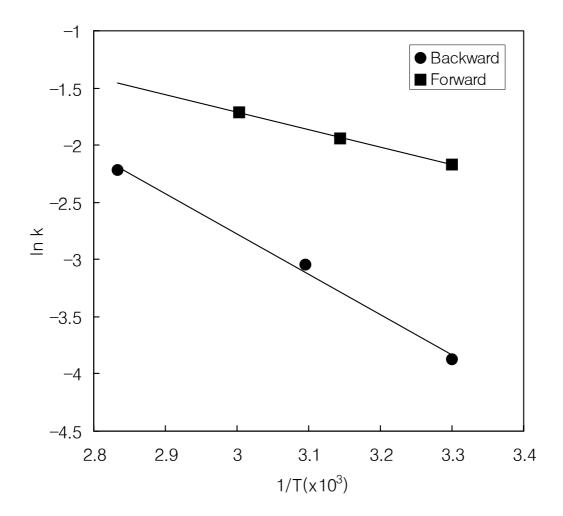
에스테르교환반응은 정반응과 역반응에 공존하는 가역반응이다. 그중에서 전체적인 반응을 조절하는 에틸렌카보네이트(EC) 에 대한 전체적은 반응속도 식은 다음과 같이 나 타낼 수 있다.

$$-r_{EC} = k_{forward} C_{MeOH}^{a} C_{EC}^{b} - k_{backward} C_{DMC}^{c} C_{EG}^{d}$$

$$\tag{1}$$


실제 반응조건에서는 초기 공급원료의 메틸렌의 농도가 높기 때문에, 정반응에 대한 반응속도를 고찰할 때에는 excess 방법을 이용하였다. 이에 따른 반응식은 다음과 같이 정리할 수 있다.

$$-r_{EC} = k_{forward} C_{MeOH}^a C_{EC}^b = k_{forward}^* C_{EC}^b$$
(2)


여러 가지 농도의 초기 에틸렌카보네이트에 대한 반응속도결과를 그림 3-13에 나타내었다. 이 실험에 사용된 초기 공극원료의 비 (MeOH/EC)는 8이상이 되도록 유지하였으며, 사용되어진 촉매의 농도는 0.2wt%를 유지하였다. 그림 3-13에 나타낸 실험결과를 이용하여 정반응에 대한 반응차수를 구하였다. 식(2)의 양변에 log를 취한 후 정리하면 다음과 같이 나타내어진다.

$$\log(-r_{EC}) = \log k_{forward}^* + b \log C_{EC}$$
(3)

실험결과들을 식 (3)에 대입하여 그림 3-13에 나타낸 것과 같이 각각의 실험 조건에서 기울기와 y축절편의 값을 얻었다. 정반응에서의 속도 차수는 0.87이었다. 온도에 따른 반응속도 값을 이용하여 정반응에 대한 활성화 에너지와 속도상수를 구하였다. 온도에 따른 반응속도 식은 Arrhenius 법칙(식(4))을 이용하여 나타낼 수 있으며 그림 3-14에 나타내었다.

[그림 3-13] KOH촉매를 이용한 에스테르 교환반응에서 정반응에 대한 $-(\mathrm{d}C_{EC}/\mathrm{dt})$ 대 C_{EC} 의 log 플롯

[그림 3-14] 반응속도상수 와 반응온도에 대한 상관관계

$$\ln k = \ln k_o - \frac{E_a}{RT} \tag{4}$$

정반응에서의 활성화 에너지는 12.73 kJ/mol 이고 반응속도 상수는 18.1 exp(-12734.2/RT) 이다. 여기서 R은 기체상수이며, 그 값은 8.3 J/mol-K이다.

에스테르교환반응에서의 역반응에 대한 반응속도론적 고찰은 식(1)에서 다음과 같이 정리할 수 있다. 역반응에서는 정반응과 달리 DMC와 EG의 농도가 전체적인 반응 에 영향을 미치므로, 두 생성물을 반응속도에 고려해 주어야 한다.

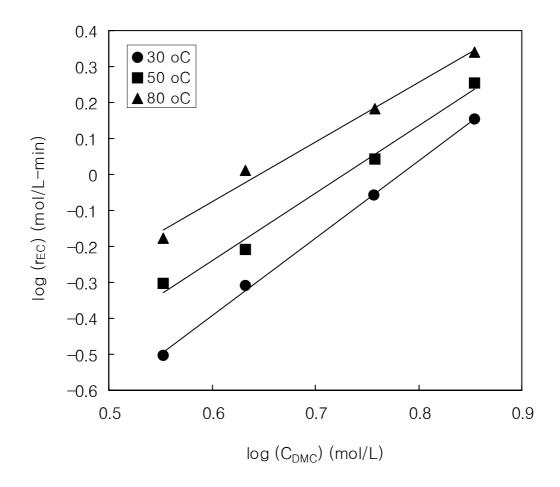
$$r_{EC} = k_{backward} C_{DMC}^{c} C_{EG}^{d} \tag{5}$$

역반응속도식을 구하기 위해서 초기 공급원료을 동일한 농도의 DMC 와 EG를 사용하면 식(5)를 다음과 같이 정리할 수 있다.

$$r_{EC} = k_{backward} C_{DMC}^{c} C_{EG}^{d} = k_{backward} C_{DMC}^{c+d} = k_{backward} C_{DMC}^{n}$$

$$(6)$$

여기서 n은 역반응의 전체반응차수를 나타낸다. 식(6)의 양변의 log를 취하면, 다음과 같이 나타낼 수 있다.

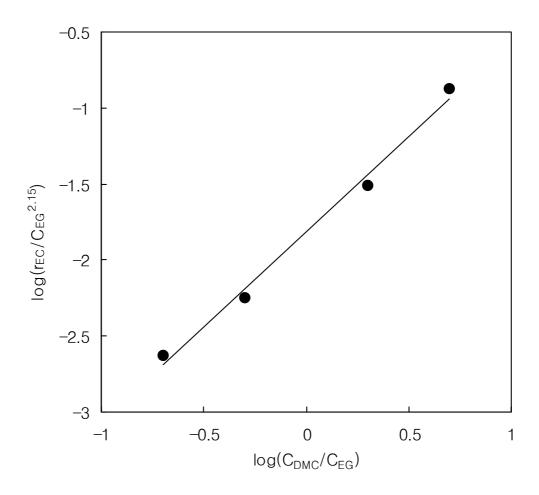

$$\log(r_{EC}) = \log k_{backward} + n \log C_{DMC} \tag{7}$$

식(7)을 이용하여서 각각의 온도에 따른 전체반응차수를 그림 3-15을 이용하여 계산하였다. 전체 반응차수는 반응온도에 크게 영향을 받지 않았으며, 역반응의 전체 반응차수는 2.15 이다. 구하여진 전체반응차수를 가시고 정리된 식(8)을 이용하여, 역반응에서의 DMC와 EG농도에 대한 각각의 반응차수를 구하였다. 사용된 식은 다음과 같다.

$$r_{EC} = k_{backward} C_{DMC}^{c} C_{EG}^{d} = k_{backward} C_{DMC}^{c} C_{EG}^{n-c} = k_{backward} C_{EG}^{n} (\frac{C_{DMC}}{C_{EG}})^{c}$$

$$(8)$$

식 (8)의 양변에 log를 취하고 구해진 전체반응차수를 대입하면 다음과 같이 정리할 수 있다.


[그림 3-15] KOH촉매를 이용한 에스테르 교환반응에서 역반응에 대한 $-(\mathrm{d}C_{EC}/\mathrm{dt})$ 대 C_{EC} 의 \log 플롯

$$\log \frac{r_{EC}}{C_{EG}^{2.15}} = \log k_{backward} + c \log \frac{C_{DMC}}{C_{EG}}$$
(9)

식(9)를 이용하여서 그림 3-16을 구한 후에 DMC농도에 대한 역반응차수를 계산하였다. 본 반응에서 DMC농도에 대한 역반응차수는 1.25이고 EG농도에 대한 역반응 차수는 0.9로 계산되었다. 각각의 온도에 대하여 구해진 반응속도식을 가지고 반응속도 상수를 그림 13-14를 이용하여 계산하였다. 역반응에 대한 활성화 에너지는 29.28 kJ/mol 이고 반응속도 상수는 2457.5 exp(-29276.6/RT) 이다. 에스테르교환반응에 대한 반응속도론적 결과는 표 3-14에 나타내었다.

< 표 3-9 > 에스테르 교환반응에서 반응차수와 속도상수

반응방향	반응차수	활성화 에너지 (kJ/mol)	반응 상수
정반응	b = 0.87	12.73	18.1 e ^{-12734/RT}
역반응	c = 1.25, d=0.9	29.28	2457.5 e ^{-29276/RT}

[그림 3-16] KOH촉매를 이용한 에스테르 교환반응에서 역반응에 대한 $-(\mathrm{d}C_{EC}/\mathrm{dt})/\mathrm{C_{EC}}^{2.15}$ 대 C_{DMC}/C_{EG} 의 log 플롯