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Chapter 1

OVERVIEW AND

FUNDAMENTALS OF SPC
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1.1 INTRODUCTION

1.1.1 MOTIVATION FOR SPC

Background:

� Chemical plants are complex arrays of large processing units and

instrumentation.

� Even though designed to be steady, operations are in fact very

dynamic. Perturbations that occur to typical plants can be categorized

into two kinds.

{ Normal day-to-day disturbances (e.g., feed 
uctuations, heat /

mass transfer variations, pump / valve errors, etc.).

{ Abnormal events. (e.g., abnormal feedstock changes, equipment /

instrumentation malfunctioning and failures, line leaks and clogs,

catalyst poisoning).

� Most of the problems in the former category are handled by automatic

control systems.

� Problems in the latter category are relegated to plant operators.

Useful Analogy:

� plant! patient

� automatic control systems ! patient's immune system

� operator ! doctor

� DCS, plant information data base ! modern medical diagnosing

instruments.
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Key Point: Why SPC?

� Measurements often contain statistical errors / outliers + There are

inherent randomness in the process. ) Not easy for operators to

distinguish between the normal and abnormal conditions (until the

problems fully develop to produce undesirable consequences)

� SPC in the tranditional sense of the word is a

diagnostic tool, an indicator of quality problems. However, it does not

identify the source of the problem, nor corrective action to be taken.

Comment:

Advances in sensors / information technology made it possible to access an

enormous amount of information coming from the plant. The bottleneck

these days is not the amount of information, but the operator's ability to

process them. We need specialists (e.g., statisticians or SPC techniques)

who can pre-process these information into a form useful to the operators.

1.1.2 MAIN POINTS

Traditional SPC techniques have limited values in process industries because

� they assume time-independence of measurements during normal

(in-control) periods of operation.

� they assume that control should be done only when unusual events

occur, i.e.,

{ the costs of making adjustements are very high.

{ little incentive for quality control during normal (in-control)

situations.
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These assumptions are usually not met in the process industries.

In this lecture, we will extend the tradtional methods to remove these

de�ciencies. The end result will be an integrated approach to statistical

monitoring, prediction and control.

1.2 TRADITIONAL SPC TECHINQUES

Most traditional techniques are static, univariate and chart-based. We

brie
y review some of the popular techniques.

1.2.1 Milestones / Key Players of SQC

� Pareto's Maxim [1848-1923]:

Catastrophically many failures in a system are often

attributable to only a small numer of causes. General malaise

is seldom the root problem.

In order to improve the system, a skiled investigator must �nd Pareto's

glitches and correct them.

� Shewart's Hypothesis [1931]: Quantitized the Pareto's qualitative

observations using a mixture of distributions. Developed control charts

to identify out-of-control epochs, which enables one to discover the

systemic cause of Pareto's glitches by backtracking. The result is a

kind of step-wise optimization of a system.

� Deming's Implementation [1950s-1980s]: Deming implemented

the SPC concept in Japan after Second World War II (and later in

North America) on a massive scale. The result was that Japan moved
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quickly into a position to challenge and then surpass American

automobile and electronic equipments production.

1.2.2 SHEWART CHART

Basic Idea:

The basic idea is that there are switches in time which transfer the

generating process into a distribution not typical of the dominant

distribution. These switches manifest themselves into di�erent average

measurements and variances of the products.

mean-
shift

increased
variance

"In-Control''

"Out-Control''

���
�
�
��
��

����
Procedure

The procedure for constructing and using the Shewart chart is as follows:

� Collect samples during normal (in-control) epochs of the operation.

� Compute the sample mean and standard deviation.

�y =
1

N

NX
i=1

ŷ(i) (1.1)

�y =

vuuut 1

N

NX
i=1

(ŷ(i)� �y)2 (1.2)
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You may also want to construct the histogram to see if the distribution

looks close to being normal.

Normal
operating point

Upper
control limit

Lower
control limit

_
c

_
c +σ

_
c +2σ

_
c +3σ

_
c −σ

_
c −2σ

_
c −3σ

_
c =mean and σ = RMS deviation

Frequency

� Establish control limits based on the desired probability level 
. For

normal distribution,

b Prf(
y��y
�y
)2 � bg

0.02 0.1

1 0.632

2.71 0.9

3.84 0.95

5.02 0.975

6.63 0.99

7.88 0.995

9.0 0.997

For instance, the bound �y � 3�y corresponds to the 99.7% probability

level.
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� Plot the quality data against the established limits. If data violate the

limit (repeatedly), out of control is declared.

3.7

3.9

4.1

4.3

4.5

4.7

4.9

pH

0 25 50

Time(days)

Constraint

Upper control limit

Lower control
limit

_
c

_
c +3σ

_
c -3σ

Assessment

The typicallly used 3 � bound is thought to be both too small and too

large, i.e.,

� too small for rejecting outliers (i.e., to prevent false alarms).

� too large for (quickly) catching small mean-shifts and other

time-correlated changes.

The �rst problem can be solved by using the following modi�cation.

Modi�cation: \q-In-A-Row" Implementation

A useful modi�cation is the q-in-a-row implementation. In this case,

out-of-control is declared only when the bound is violated q times

in a row.

q is typically chosen as 2-3.
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Note that, assuming samples during normal operation are independent in

time, the probability of samples being outside the 
 probability bound q

consecutive times during the in-control period is (1� 
)q. For instance,

with 
 = :9 and q = 3, (1� 
)q = 0:001. Hence, in e�ect, one is using 99.9%

con�dence limit.

This way, the bound can be tightened without dropping the probability

level (or the probability level can be raised without enlarging the bound).

The q-in-a-row concept is very e�ective in rejecting measurement outliers or

other short-lived changes for an obvious reason.

On the other hand, with a large q, the detection time is slowed down. In

addition, the above concept relies on the fact that sample data during

normal operation are independent. This may not be true. In this case, false

alarms can result using a bound computed under the assumption of

independence.

1.2.3 CUSUM CHART

Basic Idea

As shown earlier, with the Shewart Chart, one may have di�culty (quickly)

detecting small, but sign�cant mean shifts.

mean-shift

�
To alleviate this problem, the Shewart Chart can be used in conjunction
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with the CUSUM Chart. The CUSUM chart plots the following:

s(k) =
kX
i=1

(ŷ(i)� �y) = s(k � 1) + (ŷ(i)� �y) (1.3)

DuPont has more than 10,000 CUSUM charts currently being used.

Graphical Procedure

In this procedure, s(k) is plotted on a chart and monitored. Any mean shift

should show up as a change in the slope in the CUSUM plot. To test the

statistical sign�cance of any change, a V mask is often employed:

out of control
indicated

SAMPLE NUMBER

Σ(γi-T)

Here one can set some tolerance on the rate of rise / fall. If any leg of the

V-mask crosses the plotted CUSUM values, a mean-shift is thought to have

occurred.

Non-Graphical Procedure

In practice, rather than using the graphical chart, one computes the two
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cumulative sums

s(k) = maxf0; s(k � 1) + (y(k)� �y)� �)g (1.4)

t(k) = minf0; t(k � 1) + (y(k)� �y) + �)g (1.5)

where � is the allowable slack.

One then tests:

whether s(k) � h or h(k) � �h

If either is true, out-of-control is declared.

Two parameters need to be decided:

� The allowed slack � is chosen as one-half of the smallest shift in the

mean onsidered to be important.

� h is chosen as the compromise that will result in an acceptable long

average run length (ARL) in normal situations, but an acceptably

short ARL when the process mean shifts as much as 2� units.

1.2.4 EWMA CHART

Basic Idea

The exponentially weighted moving average control chart plots the following

exponentially weighted moving average of the data:

z(i) = (1� �)(y(i) + �y(i � 1) + �2y(i� 2) + � � � � � �+ �ky(0))

= (1� �)y(i) + �z(i� 1) (1.6)

Procedure

� As before, collect operational data from the in-control epochs.
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� Establish its mean and standard deviation. This gives the target line

and upper / lower bounds for the EWMA Chart.

� Compute on-line the sequence z(k) according to

z(k) = y(k) + �z(k � 1) and plot it on the chart. As before, out of

control is declared when either of the bounds is exceeded.

Advantages / Justi�cation

The advantages of the EWMA are as follows:

� Note that the above amounts to �rst-order �ltering of the data. The

sensitivity to measurement outliers and other high-frequency

(short-lived) variations is thus reduced.

� With � = 0, one gets the Shewart Chart. As �! 1, it approaches the

CUSUM chart. Hence, the parameter � a�ords the user some


exibility. (The choice of � = 0:8 is the most common in practice.)

� This �ltering is thought to provide one-step ahead prediction of y(k) in

many situations (more on this later).

On the other hand, one does lose some high frequency information through

�ltering, so it can slow down the detection.

1.3 MULTIVARIATE ANALYSIS

1.3.1 MOTIVATION

Main Idea / Motivation

A good way way to speed up the detection of abnormality and reduce the

frequency of false alarm is utilize more measurements. This may mean

15
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- simultaneous analysis of several quality variables

- including other (more easily and e�ciently measured) process variables

into the monitoring.

Very Important Point

These measurements are often not independent, but carry signi�cant

correlation. It is important to account for the existing correlation through

the use of multivariate statistics.

Motivating Example

Let us demonstrate the importance of considering the correlation through

the following simple example. Assume that we are monitoring two outputs

y1 and y2 and their underlying probability distribution is jointly normal. If

the correlation is strong, the data distribution and joint-con�dence interval

looks as below:

y1

y2

2σ2

2σ1

-2σ1

-2σ2

∗
∗
∗ ∗ ∗

∗ ∗∗

∗ ∗
∗

∗

∗
∗
∗

Confidence
interval
99.7%

Considering the two measurements to be independent results in the

conclusion that the probability of being outside the box is approximately

(1� 0:95)2 � 0:03. The problems are:
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� There are points (marked with � in the above) that are outside the

probability level 
, but fall well within the two �s on both univariate

charts. This means missed faults.

� There are points (marked with �) that are inside the joint con�dence

interval of 99:7% probability level, but are outside the box. This means

false alarms.

Conclusions:

� The most e�ective thing to do is to establish an elliptical con�dence

interval corresponding to a desired probability level 
 and see if the

measurement falls outside the interval.

� q-in-a-row concept can be utilized as before, if desired.

� On the other hand, as the dimension of the output rises, graphical

inspection is clearly out of question. It is desirable to reduce the

variables into one variable that can be used for a monitoring purpose.

1.3.2 BASICS OF MULTIVARIABLE STATISTICS AND

CHI-SQUARE MONITORING

Computation of Sample Mean and Covariance

Let y be a vector containing n variables:

y =

2
666664
y1
...

yn

3
777775 (1.7)
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Then the sample mean and covariance can be de�ned as before:

�y =

2
666664
�y1
...

�yn

3
777775 =

1

N

NX
i=1

2
666664
y1(i)
...

yn(i)

3
777775 (1.8)

Ry =
1

N

NX
i=1

8>>>>>><
>>>>>>:

0
BBBBB@

2
666664
y1(i)
...

yn(i)

3
777775�

2
666664
�y1
...

�yn

3
777775

1
CCCCCA

0
BBBBB@

2
666664
y1(i)
...

yn(i)

3
777775�

2
666664
�y1
...

�yn

3
777775

1
CCCCCA

T
9>>>>>>=
>>>>>>;

(1.9)

As N !1, the above should approach the mean and covariance (assuming

stationarity). Hence, N should be fairly large for the above to be

meaningful.

Decorrelation & Normalization: For Normally Distributed

Variables

Assuming the underlying distribution is normal, the distribution of

z
�= R�1=2y (y � �y) is normal with zero mean and identity covariance matrix.

Hence, R�1=2y can be interpreted as a transformation performing both

decorrelation and normalization.The distribution for the two-dimensional

case looks as below:

0 1 2 3-1-2-3

1

2

3

-1

-2

-3

93.0≈γ

85.0≈γ

632.0≈γ
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Chi-Square Distribution

Hence, the following quantity takes on the chi-square distribution of

degree-of-freedom n:

�2
y

�= zTz = (y � �y)TR�1y (y � �y) (1.10)

)(
2

yP χ
Area= γ

b2(γ)

γγχ =≤ )}({ 2

2
bP y

Distribution of
2

2

2

1

2
zzzzT

y +==χ

For any given probability level 
, one can establish the elliptical con�dence

interval

(y � �y)TR�1y (y � �y) � bn(
) (1.11)

simply by reading o� the values bn(
) from a chi-square value table.
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Chi-square percentiles 

        u
n 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995

1 0 0 0 0 0.02 2.71 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.1 0.21 4.61 5.99 7.38 9.21 10.6

3 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34 12.84

4 0.21 0.3 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75

6 0.68 0.87 1.24 1.64 2.2 10.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.96

9 1.73 2.09 2.7 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19

11 2.6 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.73 26.76

12 3.07 3.57 4.4 5.23 6.3 18.55 21.03 23.34 26.22 28.3

13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32

15 4.6 5.23 6.26 7.26 8.55 22.31 25 27.49 30.58 32.8

16 5.14 5.81 6.91 7.69 9.31 23.54 26.3 28.85 32 34.27

17 5.7 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 11.65 27.2 30.14 32.85 36.91 38.58

20 7.42 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40

22 8.6 9.5 11 12.3 14 30.8 33.9 36.8 40.3 42.8

24 9.9 10.9 12.4 13.8 15.7 33.2 36.4 39.4 43 45.6

26 11.2 12.2 13.8 15.4 17.3 35.6 38.9 41.9 45.6 48.3

28 12.5 13.6 15.3 16.9 18.9 37.9 41.3 44.5 48.3 51

30 13.8 15 16.8 18.5 20.6 40.3 43.8 47 50.9 53.7

40 20.7 22.2 24.4 26.5 29.1 51.8 55.8 59.3 63.7 66.8

50 28 29.7 32.4 34.8 37.7 63.2 67.5 71.4 76.2 79.5

)(
2

nuχ

22
)12(

2

1
)(:50 −+= nznnFor uuχ

Now one can simply monitor �2
y(k) against the established bound.

Limitations of Chi-Square Test

The chi-square monitoring method that we discussed has two drawbacks.

� No Useful Insight for Diagnosis

Although the test suggests that there may be an abnormality in the

operation, it does not provide any more insight. One can store all the

output variables and analyze their behavior whenever an abnormality

is indicated by the chi-square test. However, this requires a large

storage space and analysis based on a large correlated data set is

anything but a di�cult, cumbersome task.
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� Sensitivity to Outliers and Noise

Note that the variables are normalized through R�1=2y . For an

ill-conditioned Ry, gains of very di�erent magnitudes are applied to

di�erent combinations of the y elements in the normalization process.

This can cause extreme sensitivity to noise, outliers, etc.

1.3.3 PRINCIPAL COMPONENT ANALYSIS

A solution to the both problem is to monitor and store only the principal

components of the output vector.

What's The Idea?

Consider the following two-dimensional case:

v
2

v1

y2

y1

v
2

v1

y2

y1

It is clear that, through an appropriate coordinate transformation, one can

explain most of the variation with a single variable.
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The SVD of the covariance matrix provides a useful insight for doing this.

For the above case, the SVD looks like

Ry =
�
v1 v2

� 264 �1 0

0 �2

3
75
2
64 v

T
1

vt2

3
75 ; �1 � �2

Computing the Princial Components: Using SVD

The principal components may be computed using the singular value

decomposition of Ry as follows:

Ry =
�
v1 � � � vm vm+1 � � � vn

�

2
6666666666666664

�1
. . .

�m

�m+1

. . .

�n

3
7777777777777775

2
6666666666666664

vT1
...

vTm

vTm+1
...

vTn

3
7777777777777775

(1.12)

One can, for instance, choose m such that

Pm
i=1 �iPn
i=1 �i

� 
 (1.13)

where 
 is the tolerance parameter close to 1 (say .99), or such that

�m � �m+1 (1.14)

Usually, m� n.

v1; � � � ; vm are called principal component directions. De�ne the score

variables for the principal component directions as

ti = vTi y; i = 1; � � � ;m (1.15)
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v1

y2

y1

y
2

y2

y1

t 1

These score variables are independent of one another since

E

8>>>>>><
>>>>>>:

2
666664
t1
...

tm

3
777775

2
666664
t1
...

tm

3
777775

T
9>>>>>>=
>>>>>>;

= E

8>>>>><
>>>>>:

2
666664
vT1
...

vTm

3
777775 (y(k)� �y)(y(k)� �y)T

�
v1 � � � vm

�
9>>>>>=
>>>>>;

=

2
666664
vT1
...

vTm

3
777775Ry

�
v1 � � � vm

�

=

2
666664
�21

. . .

�2m

3
777775 (1.16)

Example

Show a 4-dimensinal case, perform SVD and explain what it means.

Actually generate a large set of data and show projection to each principal

component direction.
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� Generate 1000 data points (from the normal distribution).

� Plot each y (time vs. value plot for each variable).

� Compute the sample mean and covariance.

� Perform SVD of the sample covariance.

� Compute principal components.

� Plot each variable along with its prediction from the two principal

components (ŷ = t1v1 + t2v2)

Monitoring Based on Principal Component Analysis

� ti's are perfect candidates for monitoring since they are: (1)

independent of one another, and (2) relatively low in dimension.

� The residual vector can be computed as

r(k) = y(k)�
mX
i=1

(vTi y(k))| {z }
ti(k)

vi (1.17)

The above residual vector represents the contribution of the parts that

were thrown out because their variations were judged to be

insigni�cant from the normal operating data. The size of the residual

vector should be monitored in addition, since a signi�cant growth in its

size can indicate an abnormal (out-of-control) situation.

Advantages

The advantage of the two-tier approach is that one can gain much more

information from the monitoring. Often times, when the monitoring test

indicates a problem, useful additional insights can be gained by examining

- the direction of the principal component(s) which has violated the bound

- the residual vector if its size has gone over the tolerance level.
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1.3.4 EXAMPLE: MULTIVARIATE ANALYSIS VS. SINGLE

VARIATE ANALYSIS

Compare Univariate vs. Multivariate. Compare chi-square test vs. PC

monitoring.

1.4 TIME SERIES MODELING

1.4.1 LIMITATIONS OF THE TRADITIONAL SPC

METHODS

In the process industries, there are two major sources for quality variances:

� Equipment / instrumentation malfunctioning.

� feed variations and other disturbances.

Usually, for the latter, the dividing line between normal and abnormal are

not as clear-cut since

� they occur very often.

� they tend to 
uctuate quite a bit from one time to another (but with

strong temporal correlations).

� they often cannot be eliminated at source.

Because of the frequency and nature of these disturbances, they cannot be

classi�ed as Pareto's glitches and normal periods (in-control epochs) must

be de�ned to include their e�ects.

The implications are
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� Quality variances during what are considered to be normal periods of

operation can be quite large.

� Process and quality variables show signi�cant time correlations (due to

the process dynamics as well as the temporal correlations in these

disturbances).

� There is signi�cant incentive to reduce the variance even during

in-control periods through adjustment of process condition (e.g.,

temperature, pressure).

These considerations point to the following potential shortcomings of the

traditional approaches:

� Testing For a Wrong Hypothesis?

The previously-discussed traditional methods can be considered as a

kind of hypothesis testing. The hypothesis tested is:

During in-control epochs (i.e., periods of normal operations),

the measured variable is serially independent with the mean

and variance corresponding to the chosen target and the

bound.

While the above hypothesis is reasonable in many industries like the

automotive industries and parts industries where SQC has proven

invaluable, its validity is highly questionable for chemical and other

process industries. As mentioned above, in these industries, measured

variables exhibit signi�cant time correlation even in normal (in-control)

situations.

� Lack of Control Need During In-Control Period?

SPC is based on the assumption that control adjustments should be

made only when an abnormal (out-of-control) situation arises. This is
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sensible for many industries (e.g, automotive industries) where there

are assignable causes to be removed. In reality, quality variables in

many chemical processes show signi�cant variances even during

in-control periods. The deviations are usually time-correlated giving

opportunities for control through process input adjustments (which can

lower the quality variance, leading to economic savings, more

consistent products and less environmental problems, etc.). In most

cases, little costs are associated with adjustments.

For the remainder, we will highlight the above limitations through simple

examples and propose remedies / alternatives.

1.4.2 MOTIVATING EXAMPLE

The Simple First-Order Case.

To understand the limitation arising from ignoring the time correlation,

consider the situation where the output follows the pattern

(y(k)� �y) = �(y(k � 1)� �y) + "(k) (1.18)

where "(k) is an independent (white) sequence with zero mean and variance

�2" . A plot of an example sequence is shown below.
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Note that

E

8><
>:
2
64 y

0

(k)

y
0

(k � 1)

3
75
�
y
0

(k) y
0

(k � 1)
�9>=
>;

= E

8><
>:
2
64 �y

0

(k � 1) + "(k)

y
0

(k � 1)

3
75
�
�y

0

(k � 1) + "(k) y
0

(k � 1)
�9>=
>;

=

2
64 �

2�2y + �2" ��2y

��2y �2y

3
75 (1.19)

The plot of a con�dence interval may look as below:

∗

∗∗
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∗

∗

∗

∗

∗

∗

∗

∗

∗
∗

∗

∗

∗

∗

∗
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∗

∗

y(k)

y(k-1)

 Confidence interval
99.7%

3σy

-3σy

-3σy

3σ
y

What's The Problem?

Note that, if y
0

(k) is monitored through the Shewart chart, one would not

be able to catch points marked with * that are outside the 99.7% con�dence

interval (missed faults).

In order to catch these points, one may choose to tighten the bounds.

However, doing this may cause false alarms.
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y(k)

y(k-1)

Reduced bounds
using 2-In-A-Row
Implementation

2σ

2σ

-2σ

-2σ

∗
∗
∗ ∗ ∗

∗ ∗∗

∗ ∗
∗

∗

∗
∗
∗

In short, by ignoring the time correlation, one gets bounds that are

ine�cient.

A Solution?

One solution is to model the sequence using a time series and decorrelate the

sequence. For instance, one may �t to the data a time-series model of form

y
0

(k) = a1y
0

(k � 1) + "(k) (1.20)

where "(k) is a white (time-independent) sequence. The one-step-ahead

prediction based on the above model is

ŷ
0

(kjk � 1) = a1y
0

(k � 1) (1.21)

The prediction error is

y
0

(k) � ŷ
0

(kjk � 1) = (� � a1)y
0

(k � 1) + "(k) (1.22)
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Note that, assuming the model parameter matched the true value (a = �),

the prediction error is "(k) which is an independent sequence. Hence, the

idea goes as follows:

Apply the statistical monitoring methods to the prediction error

sequence "(k), since it satis�es the basic assumption of

independence underlying these methods.

1.4.3 TIME-SERIES MODELS

Assuming the underlying distribution is stationary (during in-control

periods), one can use a time series to model the temporal correlation.

Various Model Types

Di�erent forms of time series models exist for modeling correlation of a time

sequence. We will drop the notation
0

and use y to represent y
0

for

simplicity. The following is an Auto-Regressive (AR) model of order n:

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n) + "(k) (1.23)

The parameters can be obtained using the linear least squares method. A

more complex model form is the following Auto-Regressive Moving Average

(ARMA) model:

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n)

+"(k) + c1"(k � 1) + cn"(k � n)
(1.24)

The above model structure is more general than the AR model, and hence

much fewer terms (i.e., lower n) can be used to represent the same random

sequence. However, the parameter estimation problem this time is

nonlinear. Often, pseudo-linear regression is used for it.

General Model Form
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The general form of a model for a stationary sequence is

y(k) = H(q�1)"(k) (1.25)

where H(q�1) can be interpreted as a �lter with H(0) = 1. For instance, for

AR model,

H(q�1) =
1

1 � a1q�1 � � � � � anq�n
(1.26)

For ARMA model,

H(q�1) =
1 + c1q

�1 + � � �+ cnq
�n

1 � a1q�1 � � � � � anq�n
(1.27)

1.4.4 COMPUTATION OF PREDICTION ERROR

Key Idea

The one-step-ahead prediction based on model (1.25) is

ŷ(kjk � 1) = Efy(k)jy(k � 1); � � �g = (1�H�1(q�1))y(k) (1.28)

Note that, since the constant term cancels out in (1�H�1(q�1)) (because

H(0) = 1), it contains at least one delay and the RHS does not requires

y(k).

The optimal prediction error is

y(k)� ŷ(kjk � 1) = H�1(q�1)y(k) = "(k) (1.29)

Hence, assuming the model correctly represents the underlying system, the

prediction error should be white. In conclusion,

Compute "(k) = H(q�1)y(k) and monitor "(k) using the Shewart's

method, etc.

by �ltering the output sequence with �lter H�1(q�1), one can decorrelate
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the sequence, which results in an independent variable suitable for

traditional SPC methods. H�1(q�1) can be thought of as whitening �lter.

1.4.5 INCLUDING THE DETERMINSTIC INPUTS INTO

THE MODEL

What's the Issue?

In many cases, variation of the output variable may not be entirely

stochastic. That is, there may be deterministic inputs that contribute to

the observed output behavior. Included in the deterministic inputs are

- measured disturbances

- manipulated inputs (e.g., setpoints to the existing loops)

In this case,

rather than viewing the output behavior as being entirely

stochastic, we can add the e�ect of the determinstic input

explicitly into the model for a better prediction.

Another option is to include them in the output vector. However, the

former option is more convenient for designing a supervisory control system.

Model Form : Same As Before But With Extra Inputs

In the linear systems context, one may use a model of the form

y(k) = G(q�1)u(k) +H(q�1)"(k) (1.30)

For instance, the following is the ARX (Auto-Regressive with eXtra input)

model.

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n)

+b1u(k � 1) + � � �+ bmu(k �m) + "(k)
(1.31)
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Another popular choice is the ARMAX (Auto-Regressive Moving Average

with eXtra input) model, which looks like

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n)

+b1u(k � 1) + � � �+ bmu(k �m)

+"(k) + c1"(k � 1) + � � �+ cn"(k � n)

(1.32)

Monitoring: No More Di�cult!

The one-step-ahed prediction is given as

y(kjk � 1) = G(q�1)u(k) + (I �H�1(q�1))(y(k)� G(q�1)u(k)) (1.33)

and the prediction is once again

y(k)� y(kjk � 1) = H�1(q�1)(y(k)� G(q�1)u(k)) = "(k) (1.34)

Control Opportunity: Additional Bene�t

Having the determinstic inputs in the model also give opportunities to

control the process (in addition to the monitoring). That is, one can

manipulate the deterministic input sequence u(k) to shape the output

behavior in a desirable manner (e.g., no bias, minimum-variance).

1.4.6 MODELING DRIFTING BEHAVIOR USING A

NONSTATIONARY SEQUENCE

Basic Problem

For many processes, even during what is considered to be in-control periods,

variables do not have a �xed mean or level, but rather are drifting /

mean-shifting (nonstationary). Shown below is an example of such a

process:
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Model Form

the following ARIMA model is the popular choice:

(1 � a1q
�1 � � � � � anq

�n)y(k) = (b1q
�1 + � � �+ bmq

�m)u(k)

+ (1 + c1q
�1 + � � �+ cnq

�n)
1

1� q�1| {z }
integrator

"(k)

(1.35)

The above can be re-expressed as:

�y(k) = a1�y(k � 1) + a2�y(k � 2) + � � �+ an�y(k � n)

+b1�u(k � 1) + � � �+ bm�u(k �m)

+"(k) + c1"(k � 1) + cn"(k � n)

(1.36)

Hence, simple di�erencing of input and output data gets rid of the

stationarity.

More generally, a model for a nonstationary sequence takes the form of

�y(k) = G(q�1)�u(k) +H(q�1)"(k) (1.37)

Decorrelation: Just Needs Di�erencing!
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Once again, de-correlation can be done through

"(k) = H�1(q�1)(�y(k)�G(q�1)�u(k)) (1.38)

Hence, the only extra thing required is di�erencing of the data, both in

prior to the model construction and decorrelation through �ltering with the

model inverse.

Example

Consider the case where the output is sum of the following two random

e�ects:

ε2(k)

ε1(k)
y(k)

1-q -1
1

Then, the overall behavior of y can be expressed as

y(k) =
1 � �q�1

1 � q�1
"(k) (1.39)

There also is a result that all nonstationary disturbances must tend toward

the above model (integrated moving average process) as sampling interval

gets larger.
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For the above model,

y(kjk � 1) =
�
1� 1�q�1

1��q�1

�
y(k)

= (1��)q�1

1��q�1 y(k)

= (1� �)[y(k � 1) + �y(k � 2) + �2y(k � 3) � � � � � �

This is the EWMA. Hence, EWMA is thought to provide more e�cient

monitoring under the postulated model due to its extrapolation capability.

In addition, the prediction error (or whitened output) becomes

"(k) =
�y(k)

1 � �q�1
(1.40)

which can be written as

"(k) = �"(k � 1) + �y(k) (1.41)

This is EWMA for the di�erenced output.

1.4.7 MULTIVARIABLE TIME-SERIES MODEL

Getting Rid of Both the Spatial and Temporal Correlations

A natural next step is to consider the time correlation in the multivariate

statistical monitoring context.

MIMO Time Series Model?

One option is to �t a multivariable time series model to the data. For

instance, MIMO ARMA model looks like

y(k) = A1y(k�1)+� � �+Any(k�n)+"(k)+C1"(k�1)+� � �+Cn"(k�n) (1.42)

Once a model of the above form becomes available, one can then compute

the prediction error as before (which is a white sequence) and apply the
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chi-square monitoring.

The trouble is that multivariable time-series models are notoriously di�cult

to construct from data. It requires a special parametrization of the

coe�cient matrices and the resulting regression problem is nonconvex with

many local minima.

State-Space Model?

A much better option is to �t the following state-space model instead:

x(k + 1) = Ax(k) +K"(k)

y(k) = Cx(k) + "(k)
(1.43)

Such models may be developed from y data using one of the following

options:

� computation of the autocorrelation function followed by factorization

and model reduction.

� state-space realization using (modi�ed) subspace identi�cation

techniques. The obtained model can be further re�ned using the

prediction error minimization.

Once a model of the above form becomes available, x(k) in the model can

be updated recursively. The prediction error "(k) = y(k)� Cx(k) is a

time-wise independent sequence and can be monitored using the chi-square

statistics as before. The two-tier approach based on the principal

component analysis should be utilized in this context as well.

Incorporating Deterministic Inputs

If there are deterministic inputs, one can include them in the model as

before.
x(k + 1) = Ax(k) +Bu(k) +K"(k)

y(k) = Cx(k) + "(k)
(1.44)
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Model for Nonstationary Sequences

Finally, in the case that the outputs exhibit nonstationary, drifting-type

behaviors, the data can be di�erenced before the model �tting and this

results in a model of the form

x(k + 1) = Ax(k) +B�u(k) +K"(k)

�y(k) = Cx(k) + "(k)
(1.45)

1.5 REGRESSION

1.5.1 PROBLEM DEFINITION

We have two vector variables x 2 Rn and y 2 Rp that are correlated. We

have a data set consisting of N data points, f(x(i); y(i)); i = 1; � � � ; Ng. We

assume that x and y are both mean-cetered (x and y represent the

deviation variables from the respective means). Now, using the data, we

wish to construct a prediction model

ŷ = f(x) (1.46)

which can be used to predict y given a fresh data point for x.

Example

� In a distillation column, relate the tray temperatures to the end-point

compositions. In this case x = [T (1); T (2); � � � ; T (n)]T and

y = [xD; xB ]
T .

� In a polymer reactor, relate the temperature and concentration

(trends) to the average molecular weight, polydispersity, melt index,

etc. of the product.
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� In a pulp digester, relate the liquor concentrations and temperature to

the wood composition (e.g., Kappa Number) of the product.

1.5.2 THE METHOD OF LEAST SQUARES

What Is It?

The most widely used is the method of least squares. The least squares

method is particularly powerful when one wishes to build a linear prediction

model of the form

ŷ = Ax (1.47)

With N data points, we can write

�
y(1) � � � y(N)

�
| {z }

Y

= A
�
x(1) � � � x(N)

�
| {z }

X

+
�
e(1) � � � e(N)

�
| {z }

E

(1.48)

The last term represents the prediction error (for the prediction model

ŷ = Ax) for the N available data points.

)()(ˆ iAxiy =

p

N

n

N

x(1)...........x(N)

y(1)...........y(N)

   (1)...........   (N)ŷŷ

e(1)............e(N)

A reasonable criterion for using A is

min
A
f
NX
i=1

eT (i)e(i) = kY �AXk2fg (1.49)
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The solution to the above is

A = Y XT (XXT)�1 (1.50)

Statistical Interpretation

One can develop the least squares solution from the following statistical

argument. Suppose the underlying system (from which the N data set was

generated) is

y = Ax + " (1.51)

where " is a zero-mean, Gaussian random variable vector (covering for the

noise and other randomness in the relationship between x and y). Assume

also that x is a Gaussian vector. Then, y is also Gaussian due to the

linearity. Then,

Efyjxg = �y + covfy; xgcov�1fx; xg(x � �x) (1.52)

Since x and y are both mean-centered variables, �x = 0 and �y = 0. We now

approximate the covariances using N data points available to us.

cov(y; x) � Ryx =
1

N

NX
i=1

y(i)xT (i) (1.53)

cov(y; x) � Rx =
1

N

NX
i=1

x(i)xT (i) (1.54)

Hence,

Efyjxg � ŷ =

0
@ 1

N

NX
i=1

y(i)xT (i)

1
A
0
@ 1

N

NX
i=1

x(i)xT (i)

1
A
�1

| {z }
A

x

= 1
N
Y XT ( 1

N
XXT)�1x

(1.55)

Note that the above is the same as the predictor that results from the

method of least squares.
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1.5.3 LIMITATIONS OF LEAST SQUARES

Possibility of Ill-Conditioning

Recall the least squares solution

ŷ = Y XT (XXT)�1x

= RyxR
�1
x x

(1.56)

Since Rx is a symmetric, positive (semi)-de�nite matrix, it has the

decomposition in the form of

R�1x =
�
v1 � � � vn

�
2
666664

1
�2
1

. . .
1
�2n

3
777775

2
666664
vT1
...

vTn

3
777775 (1.57)

In the case that the x data are highly correlated, �1 � �n and some of �'s

will be very small (in a relative sense).

Implication of Ill-Conditioned Information Matrix

This has the following implications.

� Possibility of Arti�cially High Gains Due to Poor Signal to Noise Ratio

Note that Ryx and Rx are only approximations of the covariance

matrices based on N data points. Due to the error in the data, they

both contain errors. When 1
�2i
's are large, errors in Ryx can get

ampli�ed greatly leading to a bad predictor (e.g., a predictor with

arti�cially high gains).

� Sensitivity to Outliers and Noise

Also, even if the covariance matrices were estimated perfectly, the

prediction can still be vulnerable to errors in the x data due to the

high gain.

� Statistical Viewpoint
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Rx (actually XXT ) is called information matrix. �i represents the

amount of information contained in the data X for a particular linear

combination of x (given by vTi x). Hence, small �i means small amount

of information. Naturally, extracting the correlation between vTi x and

y from the very small amount of data can lead to trouble.

Examples

CONSIDER A TWO-DIMENSIONAL CASE WITH AN

ILL-CONDITIONED INFORMATION MATRIX. GRAPHICALLY

ILLUSTRATE THE DATA DISTRIBUTION AND HOW IT RELATES

TO THE SVD, RESULTING ESTIMATE, etc.

1.5.4 PRINCIPAL COMPONENT REGRESSION

Main Idea

Partition the decomposition of the matrix Rx as

�
v1 � � � vm vm+1 � � � vn

�

2
6666666666666664

�1
. . .

�m

�m+1

. . .

�n

3
7777777777777775

2
6666666666666664

vT1
...

vTm

vTm+1
...

vTn

3
7777777777777775

(1.58)

The main idea is to project the data down to the reduced dimensional space

de�ned by v1; � � � ; vm (which also represents the space for which a large

amount of data are available). This is illustrated graphically as follows:
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xVx
T

m=~

x(1)..............x(N)n

N

  (1)............   (N)m

N

x~ x~

y(1).............y(N)p

N

T

mPCR VAA ˆ=

Â

We can write the projection as

~x �= V T
mx =

2
666664
vT1
...

vTm

3
777775 x (1.59)

~x represents the principal components of x. Note that, in the case that x is

of very high dimension, it is likely that dimf~xg � dimfxg. We can write

the least squares estimator as

ŷ = Y ~XT ( ~X ~XT )�1| {z }
~A

~x

= ~AV T
m| {z }

APCR

x
(1.60)

This is called principal component regression.

Statistical Viewpoint

In a statistical sense, it can be interpreted as accepting bias for reduced

variance. We are a priori setting the correlation between
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vTi x; i = m+ 1; � � � ; n and y to be zero, i.e.,

y = �1 v
T
1 x| {z }
~x1

+ � � �+ �m vTmx| {z }
~xm

+0� vTm+1x| {z }
~xm+1

+ � � �+ 0 � vTnx| {z }
~xn

since computing the correlation based on data can introduce substantial

variances which are thought to be much more harmful to estimation than

the bias.

Xv
T

1

Xv
T

n

Xv
T

2

θ1

θ2

θn

Σ y

x1

xn

x2

X

Example

TAKE THE PREVIOUS EXAMPLE, DO THE PRINCIPAL

COMPONENT REGRESSION AND SHOW THE VARIANCE VS. BIAS

TRADE-OFF.

1.5.5 PARTIAL LEAST SQUARES (PLS)

Main Idea

PLS is similar to PCR in that they are both biased regressions or subspace

regression. The di�erence is that, in PLS, the subspace (consisting of m

directions) of the regressor space is chosen to maximize XY TY XT rather

than XXT . In other words, in choosing the m directions, one looks at

- not only how much a certain modes contributes to the X data,

- but also how much it is correlated with the Y data.
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In this sense, it can be thought as a middle ground between the PCR and

the regular least squares.

Procedure

The PLS procedure can be explained as follows:

1. Set i = 1. X1 = X and Y1 = Y .

2. Choose the principal direction vi for XT
i YiY

T
i Xi.

3. vTi Xi = ~Xi

4. Compute the LS prediction of Yi based on ~Xi.

Ŷi = Yi ~X
T
i

1

( ~Xi
~XT
i )

~Xi (1.61)

5. Compute the residuals

Yi+1 = Yi � Ŷi

Xi+1 = Xi � vi~xi
(1.62)

6. If the residual Yi+1 is su�ciently small, stop. If not, set i = i + 1 and

go back to Step 2.

From the above, with m iteration, the m-dimensional regression space is

de�ned. Create a data matrix

~X =

2
666664

~X1
...
~Xm

3
777775
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1)
~~

(
~ −TT XXXY

x(1).................x(N)

X

  (1).................  (N)

P

x~ x~

y(1)..................y(N)

Y

x~

PXXXYA TT
PLS

1)
~~

(
~ˆ −=

~X can be expressed as a linear projection of X :

~X = PX (1.63)

where P 2 Rm�n. Then, the PLS predictor can be written as

ŷ = Y ~XT ( ~X ~XT )�1~x

= Y ~XT ( ~X ~XT )�1P| {z }
APLS

x (1.64)

The above is not the most e�cient algorithm from a computational

standpoint. The most widely used is the NIPALS (Nonlinear Iterative

Partial Least Squares) algorithm described in (Geladi and Kowalski,

Analytica Chimica Acta, 1986)

1.5.6 NONLINEAR EXTENSIONS

Regression needs not be con�ned to just linear relationships. More

generally, one can search for a prediction model of the form ŷ = f(x) where

f can be a nonlinear function.
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Finite Dimensional Parameterization

To reduce the problem to a parameter estimation, one de�nes a search set

with a �nite dimensional parameterization for the nonlinear function. The

search set can take on di�erent forms.

� Functional Expansion

ŷ =
nX
i=1

ci�i(x) (1.65)

or

ŷ =
nX
i=1

�i(x; ci) (1.66)

f�i(x); i = 1; � � � ; ng are basis functions (polynomials, sinusoids,

wavelets, Gaussian functions, etc.). The problem is reduced to �nding

ci. The former leads to a linear regression problem while the latter to a

nonlinear problem. The order can be determined on an iterative basis,

that is, by examining the prediction error as more and more terms are

introduced.

� Network Based Approach

For instance, shown below is the so called Arti�cial Neural Network

(ANN) inspired by biological neural systems. The parameters are the

various weights which must be selected on the basis of the available

data. This is referred to as the learning in the ANN parlance. The

usual criterion is again the least squares or its extensions.
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x1

x2

xn

y1

y2

yp

Nonlinear PLS

t1

t2

tm

x1

x2

xn

y1

y2

yp

x1

x2

xn
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1.5.7 EXTENSIONS TO THE DYNAMIC CASE

Suppose x and y have dynamic correlations:

y(k) = f(x(k); x(k � 1); � � � ; � � �) (1.67)

Di�erent structures can be envisioned:

� Time Series: construct a predictor of form

ŷ(k) = a1ŷ(k � 1) + � � �+ anŷ(k � n)

+b0x(k) + b1x(k � 1) + � � �+ bmx(k � n)

y(k) = ŷ(k) + "(k)

(1.68)

a1; � � � ; an; b0; � � � ; bm can be found to minimize the prediction error

using the available data. Note that, since we don't have data for

ŷ(k � 1); � � � ; ŷ(k � n), and they depend on the choice of the

parameters, this is a nonlinear regression problem. Therefore, it is

pretty much limited to SISO problems.

� State-Space Model: For MIMO systems, use Subspace ID to create

z(k + 1) = Az(k) + "1(k)2
64 x(k)
y(k)

3
75 =

2
64 Cx

Cy

3
75 z(k) + "2(k)

(1.69)

Then, build the Kalman �lter that uses the measurement x to predict

y can be written as

ẑ(k) = Aẑ(k � 1) +K(x(k)� CxAẑ(k � 1))

ŷ(k) = Cyẑ(k)
(1.70)
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Chapter 2

APPLICATION AND CASE

STUDIES

Outline

� SBR Semi-Batch Reactor System: Monitoring

� Batch Pulp Digester: Inferential Kappa Number Control

� Nylon 6,6 Autoclave: Monitoring & Inferential Control of Quality

Variables

� Continuous Pulp Digester: Inferential Kappa Number Control
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2.1 PCA MONITORING OF AN SBR

SEMI-BATCH REACTOR SYSTEM

2.1.1 INTRODUCTION

Background

� In operating batch reaction systems, certain abnormalities (e.g.,

increased feed impurity level, catalyst poisonging, instrumentation

malfunctioning) develop that eventually throw the quality completely

o� spec.

� It is desirable to catch these incipient faults quickly so that the

problem can be recti�ed.

� It is desirable not to rely on lab measurements for this purpose since

this will introduce signi�cant delays.

Key Idea

� Use more easily measured process variable trends to classify between

normal batches and abnormal batches.

� The key problem is to extract out the key identifying features (�nger

prints) from trajectories of large amount of variables.

Appication

� An SBR Polymerization Reactor.
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2.1.2 PROBLEM DESCCRIPTION

Process / Problem Characteristics

� Reaction:

Styrene + Butadiene �!polymerization Latex Rubber

� Emulsion Polymerization

� The reactor is initially charged with seed SBR particles, initiator,

chain-transfer agent, emulsi�er, a small amount of styrene and

butadiene monomers.

� Batch duration is 1000 minutes.

� The following measurements are available with 5 minute interval:

{ 
ow rates of styrene

{ 
ow rates of butadiene

{ temperature of feed

{ temperature of reactor

{ temperature of cooling water

{ temperature of reactor jacket

{ density of latex in the reactor

{ total conversion (an estimate)

{ instantaneous rate of energy release (an estimate)

Available Data

� 50 batch runs with typical random variations in base case conditions

(such as initial charge of seed latex, amount of chain transfer agent and

level of impurities).
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� Two additional batches with \unusual disturbances."

{ impurity of 30% above that of the base case was introduced in the

butadiene feed at the beginning of the batch.

{ impurity of 50% above that of the base case was introduced in the

butadiene feed at the halfway mark.

2.1.3 RESULTS

End-Of-Batch Principal Component Analysis
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� Establish the mean trajetory for each variable and compute the

deviation trajectory.

� Normalize each variable with its variance.

� Perform \lifting", that is, stack all the trajectories into a common

vector to obtain a single vector Y for each batch. Then, form a matrix

Y by aligning Y for the entire 50 batches.

Note the dimension of Y is 9� 200. Clearly there are only a few modes

of variations in this vector.

� Determine the principal component directions (eigenvectors of Y with

signi�cant eigenvalues). Three components were judged to be su�cient.

Y =
�
v1 v2 v3 v4 � � � v1800

�

2
6666666666666664

�1

�2

�3

�4
. . .

�1800

3
7777777777777775

2
6666666666666664

vT1

vT2

vT3

vT4
...

vT1800

3
7777777777777775
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� Compute the principal component score variables for each batch:

ti(j) = vTi Y(j); i = 1; � � � ; 3 j = 1; � � � ; 50

The �rst two P.C. scores for the 50 batches and the two bad batches

are plotted below:

Compute the covariance matrix (diagonal) Rt for the P.C.'s. Establish

the 95% and 99% con�dence limits (ellipses) for the P.C.'s.
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One can also use Hotelling Statistics:

D = tTR�1t t
N(N �m)

m(N2 � 1)
� Fm;N�m

Here t = [t1; t2; t3]
T and N = 50 and m = 3.

� Compute the residuals and establish the 95% and 99% con�dence

limits for the square sum (assuming normality of the underlying

distribution). The SPE (sum of the squares of the residuals) for each

batch is plotted against the con�dence limits:

During-Batch Principal Component Analysis

� The main issue in applying the PC monitoring during a batch is what

to do with the missing future data.
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current
time

end

(a)

y

current
time

end

(c)

y

endcurrent
time

(b)

y

Handling missing measurement

Options are:

{ Assume for all the variables that the future deviation will be zero.

{ Assume for each variable that the current level of deviation will

continue until the end of batch.

{ Use statistical correlation to estimate the future deviation.

We will denote the lifted vector at time t with missing future

measurements �lled in as Ŷt(j), where t and j denote the time and

batch index.

� For each time step, the con�dence limits for the SPE and P.C.'s can be

established.

� Now, at each time step for each batch, compute the P.C.s and SPE and

compare against the con�dence intervals.
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Good Batch
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Bad Batch I
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Bad Batch II
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2.2 DATA-BASED INFERENTIAL QUALITY

CONTROL IN BATCH REACTORS

2.2.1 INTRODUCTION

Background

� Large quality variances are often due to

{ machine (equipment, instrumentation) errors for which the

dinstinction betwewn failures and nonfailures are clear

{ feed variations and operating condition variations for which the

dividing line between failures and nonfaillures is often blurred.

� The latter disturbances tend to 
uctuate quite a bit from batch to

batch and are usually not removable at source.

� For these disturbances, on-line prediction and control are desired

rather than statistical monitoring followed by diagnosis (since these

cannot be categorized as as Pareto's glitches).

Key Idea

� Capture the statistical correlation between easily measured process

variable trajectories and �nal quality variables through regression.

� Use the regression model for on-line prediction and control (through

manipulation of operating parameters) of �nal quality variables.

Application

� Batch Pulp Digester

� Nylon 6,6 Autoclave

61



c
1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

2.2.2 CASE STUDY IN DETAILS

See the attached!
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2.3 INFERENTIAL QUALITY CONTROL OF

CONTINUOUS PULP DIGESTER

2.3.1 INTRODUCTION

Background

� In continous systems, on-line quality measurements are often (1) very

di�cult, (2) very expensive, and/or (3) unavailable.

� Lab measurements introduce large delays, making tight control

impossible (high-frequency errors are pretty much left uncontrolled).

� There is signi�cant incentive to reduce the variability by increasing the

bandwidth of control.

Key Idea

� Relate more easily measured process variables to quality variables

dynamically through data regression.

� Use the regression model for on-line prediction and control of quality

variables.

Elimination of delays ! More e�cient prediction of quality variables

! tighter control.

Appication

� A continuous pulp digester.

2.3.2 CASE STUDY IN DETAILS

See attached!
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