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� Quality variances during what are considered to be normal periods of

operation can be quite large.

� Process and quality variables show signi�cant time correlations (due to

the process dynamics as well as the temporal correlations in these

disturbances).

� There is signi�cant incentive to reduce the variance even during

in-control periods through adjustment of process condition (e.g.,

temperature, pressure).

These considerations point to the following potential shortcomings of the

traditional approaches:

� Testing For a Wrong Hypothesis?

The previously-discussed traditional methods can be considered as a

kind of hypothesis testing. The hypothesis tested is:

During in-control epochs (i.e., periods of normal operations),

the measured variable is serially independent with the mean

and variance corresponding to the chosen target and the

bound.

While the above hypothesis is reasonable in many industries like the

automotive industries and parts industries where SQC has proven

invaluable, its validity is highly questionable for chemical and other

process industries. As mentioned above, in these industries, measured

variables exhibit signi�cant time correlation even in normal (in-control)

situations.

� Lack of Control Need During In-Control Period?

SPC is based on the assumption that control adjustments should be

made only when an abnormal (out-of-control) situation arises. This is
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sensible for many industries (e.g, automotive industries) where there

are assignable causes to be removed. In reality, quality variables in

many chemical processes show signi�cant variances even during

in-control periods. The deviations are usually time-correlated giving

opportunities for control through process input adjustments (which can

lower the quality variance, leading to economic savings, more

consistent products and less environmental problems, etc.). In most

cases, little costs are associated with adjustments.

For the remainder, we will highlight the above limitations through simple

examples and propose remedies / alternatives.

1.4.2 MOTIVATING EXAMPLE

The Simple First-Order Case.

To understand the limitation arising from ignoring the time correlation,

consider the situation where the output follows the pattern

(y(k)� �y) = �(y(k � 1)� �y) + "(k) (1.18)

where "(k) is an independent (white) sequence with zero mean and variance

�2
" . A plot of an example sequence is shown below.
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The plot of a con�dence interval may look as below:
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What's The Problem?

Note that, if y
0

(k) is monitored through the Shewart chart, one would not

be able to catch points marked with * that are outside the 99.7% con�dence

interval (missed faults).

In order to catch these points, one may choose to tighten the bounds.

However, doing this may cause false alarms.
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In short, by ignoring the time correlation, one gets bounds that are

ine�cient.

A Solution?

One solution is to model the sequence using a time series and decorrelate the

sequence. For instance, one may �t to the data a time-series model of form

y
0

(k) = a1y
0

(k � 1) + "(k) (1.20)

where "(k) is a white (time-independent) sequence. The one-step-ahead

prediction based on the above model is

ŷ
0

(kjk � 1) = a1y
0

(k � 1) (1.21)

The prediction error is

y
0

(k) � ŷ
0

(kjk � 1) = (� � a1)y
0

(k � 1) + "(k) (1.22)
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Note that, assuming the model parameter matched the true value (a = �),

the prediction error is "(k) which is an independent sequence. Hence, the

idea goes as follows:

Apply the statistical monitoring methods to the prediction error

sequence "(k), since it satis�es the basic assumption of

independence underlying these methods.

1.4.3 TIME-SERIES MODELS

Assuming the underlying distribution is stationary (during in-control

periods), one can use a time series to model the temporal correlation.

Various Model Types

Di�erent forms of time series models exist for modeling correlation of a time

sequence. We will drop the notation
0

and use y to represent y
0

for

simplicity. The following is an Auto-Regressive (AR) model of order n:

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n) + "(k) (1.23)

The parameters can be obtained using the linear least squares method. A

more complex model form is the following Auto-Regressive Moving Average

(ARMA) model:

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n)

+"(k) + c1"(k � 1) + cn"(k � n)
(1.24)

The above model structure is more general than the AR model, and hence

much fewer terms (i.e., lower n) can be used to represent the same random

sequence. However, the parameter estimation problem this time is

nonlinear. Often, pseudo-linear regression is used for it.

General Model Form
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The general form of a model for a stationary sequence is

y(k) = H(q�1)"(k) (1.25)

where H(q�1) can be interpreted as a �lter with H(0) = 1. For instance, for

AR model,

H(q�1) =
1

1 � a1q�1 � � � � � anq�n
(1.26)

For ARMA model,

H(q�1) =
1 + c1q

�1 + � � �+ cnq
�n

1 � a1q�1 � � � � � anq�n
(1.27)

1.4.4 COMPUTATION OF PREDICTION ERROR

Key Idea

The one-step-ahead prediction based on model (1.25) is

ŷ(kjk � 1) = Efy(k)jy(k � 1); � � �g = (1�H�1(q�1))y(k) (1.28)

Note that, since the constant term cancels out in (1�H�1(q�1)) (because

H(0) = 1), it contains at least one delay and the RHS does not requires

y(k).

The optimal prediction error is

y(k)� ŷ(kjk � 1) = H�1(q�1)y(k) = "(k) (1.29)

Hence, assuming the model correctly represents the underlying system, the

prediction error should be white. In conclusion,

Compute "(k) = H(q�1)y(k) and monitor "(k) using the Shewart's

method, etc.

by �ltering the output sequence with �lter H�1(q�1), one can decorrelate
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the sequence, which results in an independent variable suitable for

traditional SPC methods. H�1(q�1) can be thought of as whitening �lter.

1.4.5 INCLUDING THE DETERMINSTIC INPUTS INTO

THE MODEL

What's the Issue?

In many cases, variation of the output variable may not be entirely

stochastic. That is, there may be deterministic inputs that contribute to

the observed output behavior. Included in the deterministic inputs are

- measured disturbances

- manipulated inputs (e.g., setpoints to the existing loops)

In this case,

rather than viewing the output behavior as being entirely

stochastic, we can add the e�ect of the determinstic input

explicitly into the model for a better prediction.

Another option is to include them in the output vector. However, the

former option is more convenient for designing a supervisory control system.

Model Form : Same As Before But With Extra Inputs

In the linear systems context, one may use a model of the form

y(k) = G(q�1)u(k) +H(q�1)"(k) (1.30)

For instance, the following is the ARX (Auto-Regressive with eXtra input)

model.

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n)

+b1u(k � 1) + � � �+ bmu(k �m) + "(k)
(1.31)
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Another popular choice is the ARMAX (Auto-Regressive Moving Average

with eXtra input) model, which looks like

y(k) = a1y(k � 1) + a2y(k � 2) + � � �+ any(k � n)

+b1u(k � 1) + � � �+ bmu(k �m)

+"(k) + c1"(k � 1) + � � �+ cn"(k � n)

(1.32)

Monitoring: No More Di�cult!

The one-step-ahed prediction is given as

y(kjk � 1) = G(q�1)u(k) + (I �H�1(q�1))(y(k)� G(q�1)u(k)) (1.33)

and the prediction is once again

y(k)� y(kjk � 1) = H�1(q�1)(y(k)� G(q�1)u(k)) = "(k) (1.34)

Control Opportunity: Additional Bene�t

Having the determinstic inputs in the model also give opportunities to

control the process (in addition to the monitoring). That is, one can

manipulate the deterministic input sequence u(k) to shape the output

behavior in a desirable manner (e.g., no bias, minimum-variance).

1.4.6 MODELING DRIFTING BEHAVIOR USING A

NONSTATIONARY SEQUENCE

Basic Problem

For many processes, even during what is considered to be in-control periods,

variables do not have a �xed mean or level, but rather are drifting /

mean-shifting (nonstationary). Shown below is an example of such a

process:
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Model Form

the following ARIMA model is the popular choice:

(1 � a1q
�1 � � � � � anq

�n)y(k) = (b1q
�1 + � � �+ bmq

�m)u(k)

+ (1 + c1q
�1 + � � �+ cnq

�n)
1

1� q�1| {z }
integrator

"(k)

(1.35)

The above can be re-expressed as:

�y(k) = a1�y(k � 1) + a2�y(k � 2) + � � �+ an�y(k � n)

+b1�u(k � 1) + � � �+ bm�u(k �m)

+"(k) + c1"(k � 1) + cn"(k � n)

(1.36)

Hence, simple di�erencing of input and output data gets rid of the

stationarity.

More generally, a model for a nonstationary sequence takes the form of

�y(k) = G(q�1)�u(k) +H(q�1)"(k) (1.37)

Decorrelation: Just Needs Di�erencing!
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Once again, de-correlation can be done through

"(k) = H�1(q�1)(�y(k)�G(q�1)�u(k)) (1.38)

Hence, the only extra thing required is di�erencing of the data, both in

prior to the model construction and decorrelation through �ltering with the

model inverse.

Example

Consider the case where the output is sum of the following two random

e�ects:

ε2(k)

ε1(k)
y(k)

1-q -1
1

Then, the overall behavior of y can be expressed as

y(k) =
1 � �q�1

1 � q�1
"(k) (1.39)

There also is a result that all nonstationary disturbances must tend toward

the above model (integrated moving average process) as sampling interval

gets larger.
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For the above model,

y(kjk � 1) =
�
1� 1�q�1

1��q�1

�
y(k)

= (1��)q�1

1��q�1 y(k)

= (1� �)[y(k � 1) + �y(k � 2) + �2y(k � 3) � � � � � �

This is the EWMA. Hence, EWMA is thought to provide more e�cient

monitoring under the postulated model due to its extrapolation capability.

In addition, the prediction error (or whitened output) becomes

"(k) =
�y(k)

1 � �q�1
(1.40)

which can be written as

"(k) = �"(k � 1) + �y(k) (1.41)

This is EWMA for the di�erenced output.

1.4.7 MULTIVARIABLE TIME-SERIES MODEL

Getting Rid of Both the Spatial and Temporal Correlations

A natural next step is to consider the time correlation in the multivariate

statistical monitoring context.

MIMO Time Series Model?

One option is to �t a multivariable time series model to the data. For

instance, MIMO ARMA model looks like

y(k) = A1y(k�1)+� � �+Any(k�n)+"(k)+C1"(k�1)+� � �+Cn"(k�n) (1.42)

Once a model of the above form becomes available, one can then compute

the prediction error as before (which is a white sequence) and apply the
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chi-square monitoring.

The trouble is that multivariable time-series models are notoriously di�cult

to construct from data. It requires a special parametrization of the

coe�cient matrices and the resulting regression problem is nonconvex with

many local minima.

State-Space Model?

A much better option is to �t the following state-space model instead:

x(k + 1) = Ax(k) +K"(k)

y(k) = Cx(k) + "(k)
(1.43)

Such models may be developed from y data using one of the following

options:

� computation of the autocorrelation function followed by factorization

and model reduction.

� state-space realization using (modi�ed) subspace identi�cation

techniques. The obtained model can be further re�ned using the

prediction error minimization.

Once a model of the above form becomes available, x(k) in the model can

be updated recursively. The prediction error "(k) = y(k)� Cx(k) is a

time-wise independent sequence and can be monitored using the chi-square

statistics as before. The two-tier approach based on the principal

component analysis should be utilized in this context as well.

Incorporating Deterministic Inputs

If there are deterministic inputs, one can include them in the model as

before.
x(k + 1) = Ax(k) +Bu(k) +K"(k)

y(k) = Cx(k) + "(k)
(1.44)
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Model for Nonstationary Sequences

Finally, in the case that the outputs exhibit nonstationary, drifting-type

behaviors, the data can be di�erenced before the model �tting and this

results in a model of the form

x(k + 1) = Ax(k) +B�u(k) +K"(k)

�y(k) = Cx(k) + "(k)
(1.45)

1.5 REGRESSION

1.5.1 PROBLEM DEFINITION

We have two vector variables x 2 Rn and y 2 Rp that are correlated. We

have a data set consisting of N data points, f(x(i); y(i)); i = 1; � � � ; Ng. We

assume that x and y are both mean-cetered (x and y represent the

deviation variables from the respective means). Now, using the data, we

wish to construct a prediction model

ŷ = f(x) (1.46)

which can be used to predict y given a fresh data point for x.

Example

� In a distillation column, relate the tray temperatures to the end-point

compositions. In this case x = [T (1); T (2); � � � ; T (n)]T and

y = [xD; xB ]
T .

� In a polymer reactor, relate the temperature and concentration

(trends) to the average molecular weight, polydispersity, melt index,

etc. of the product.
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