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Part IV

ADVANCED ISSUES IN MPC
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Chapter 1

STATE-SPACE MODEL

PREDICTIVE CONTROL

1.1 SHORTCOMINGS OF CURRENT INDUSTRIAL

MPC PRACTICE

� Truncated Step Response Model:

{ Many model coe�cients have to be stored:

Example) 5 x 5 system with 30 step response coe�cients on each

gives 750 coe�cients.

The problem is much worse for systems with mixed time scale

dynamics (e.g. a high-purity distillation column) where sample

time needs to be chosen according to the fast time-scale dynamics,

but the settling time is determined by the slow time-scale

dynamics.

This limits the size of application.

{ Unstable systems cannot be handled.

{ Truncation error is unavoidable.
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� Disturbance estimation:

{ Step disturbance is assumed and, thus, drift, ramp, oscillatory

disturbances cause poor performance.

{ No cross channel update.

{ Unmeasured outputs are not updated.

These shortcomings motivate development of

MPC based on a general state-space model.
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1.2 STATE SPACE MPC

State Space Plant Model

Consider state space model of the plant obtained from either fundamental

ODE's or system identi�cation:

x(k + 1) = Ax(k) +Buu(k) +Bdd(k)

y(k) = Cx(k)

+ di�erencing

�x(k + 1) = A�x(k) +Bu�u(k) + Bd�d(k)

�y(k) = C�x(k)

x(k): state

u(k): control input

y(k): measurement output

d(k): measured disturbances

� The number of coe�cients is reduced.

Example) For 5 x 5 system with 10 states, only 200 coe�cients need to

be stored
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� For appropriate choice of A, state space model can represent unstable

process.

� No truncation error.

Prediction with State Space Plant Model

If we constrain that �u(k +mjk) = � � � = �u(k + p� 1jk) = 0,

2
666666664

~y(k + 1jk)

~y(k + 2jk)
...

~y(k + pjk)

3
777777775

=

2
666666664

��

��2

...

��p

3
777777775
X(kjk) +

2
666666664

��d

���d
...

��p�1�d

3
777777775
d(k)

+

2
666666664

��u 0 � � � 0

���u ��u � � � 0
...

... . . . ...

��p�1�u ��p�2�u � � � ��p�m�u

3
777777775
�U(k)

Rewriting the above,

+

Y(k + 1jk) = SXX(kjk) + Sd�d(k) + SU�U(k)
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1.3 DISTURBANCE ESTIMATION VIA STATE

ESTIMATION

Motivation

In current industrial MPC algorithms,

� models are run open-loop

� feedback is entered into the prediction statically (no memory of the

past feedbakc)

In disturbance estimation via state estimation

� unmeasured disturbance e�ects are included in the memory (state

vector) and update is made directly to the states.

� fuller use of feedback measurement is allowed.
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State Space Disturbance Model Development

1. Assume somthing reasonable:

� Step disturbance to output:

�yw(k) = e(k)

� Ramp disturbance to output:

�xw(k + 1) = �xw(k) + e(k)

�yw(k) = �xw(k) + e(k)

2. From funndamental ODE's: unmeasured disturbances in ODE's.

�xw(k + 1) = A�xw(k) +Bwe(k)

�yw(k) = C�xw(k)

3. From Historical Plant Deta: Given historical plant deta, the stochastic

state space model of the disturbance can be obtained using various

techniques like spectral factorization and subspace identi�cation.
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Overall State Space Model

Plant with noise and state space disturbance model:

Overall model:

2
666666664

�x(k + 1)

�xw(k + 1)

e(k + 1)

~y(k + 1)

3
777777775

=

2
666666664

A 0 0 0

0 Aw 0 0

0 0 0 0

CA CwAw CwBw I

3
777777775

2
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�x(k)

�xw(k)

e(k)

~y(k)

3
777777775

+

2
666666664

Bu

0

0

CBu

3
777777775
�u(k) +

2
666666664

Bd

0

0

CBd

3
777777775
�d(k) +

2
666666664

0

0

I

Dw

3
777777775
e(k + 1)

ŷ(k) = [0 0 0 I]

2
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�x(k)

�xw(k)

e(k)

~y(k)

3
777777775
+ �(k)
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Overall State Space Model (Continued)

+ denote the above as

X(k + 1) = �X(k) + �u�u(k) + �d�d(k) + �ee(k + 1)

ŷ(k) = �X(k) + �(k)

Given state space disturbance model, disturbance estimation can be done in

a systematic way using well known Kalman �ltering technique.

X(kjk � 1) = �X(k � 1jk � 1) + �u�u(k � 1) + �d�d(k � 1)

X(kjk) = X(kjk � 1) +K(ŷ(k)� ~y(kjk � 1))

� Recursive feedback update

� Various disturbance shape can be handled

� Cross-channel update
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1.4 MPC FORMULATION USING STATE-SPACE

MODEL

Overview
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Chapter 2

NONLINEAR AND ADAPTIVE

MODEL PREDICTIVE CONTROL

2.1 MOTIVATION

Why Nonlinear and Adaptive MPC?

� Continuous processes with wide operating ranges
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� Continuous processes with very strong nonlinearity (e.g.,

exothermic CSTR operated close to the optimum yield).

� Batch processes or other transition processes

These applications motivate development of

Nonlinear MPC or Adaptive MPC.
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2.2 ISSUES IN NONLINEAR MPC

Issues

� Nonlinear Models: If �rst principle nonlinear ODE model

is not available, do we have appropriate nonlinear system

identi�cation tools?

� State Estimation: At t = k,

x(k � 1jk � 1); u(k � 1); d(k � 1); y(k � 1) =) x(kjk)

The open-loop model prediction can be done through nonlinear

model integration. However, the measurement correction is

much more di�cult. For instance, is linear gain correction

x(kjk) = x(kjk � 1) +K(ŷ(k)� y(kjk � 1))

su�cient? Also, how should we choose the gain matrix K?

� Control Computation:

The prediction equation is no longer linear in the future input

moves, i.e.,

Y(k + 1jk) = ~F(x(kjk); d(k);�U(k))

Since we have nonlinear prediction constraints, the

optimization is no longer QP and can be computationally

expensive and unreliable (e.g., local minima).
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Nonlinear Models

� First principle nonlinear ODE models

dx
dt

= f(x; u; d; w)

ŷ = g(x)

We will focus on this type of model in this lecture.

� Nonlinear di�erence equation model for nonlinear system

identi�cation

x(k + 1) = f(x(k); u(k); d(k))

ŷ(k) = g(x(k))

{ Arti�cial neural networks

{ Nonlinear series expansion models such as Volterra model

and and NARX model.

{ Rectilinear models where g and/or g are piece-wise linear.

{ Linear model plus static nonlinearity

� Hammerstein Model: input nonlinearity

� Wiener Model: output nonlinearity

Generally, one shoud be very careful using a nonlinear model �tted

to open loop data as the model can behave very di�erently when

the loop is closed.
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2.3 LINEARIZATION BASED NONLINEAR MPC

Standard Model

The standard model that we will use is of the following form:

dx
dt

= f(x; u; d; w)

ŷ = g(x) + �

We express the unmeasured disturbance w using the following

stochastic equation driven by zero-mean white noise sequence e(k):

xe(k + 1) = Aex
e(k) +Bee(k)

w(k) = Cex
e(k)

EXAMPLE: If Ae = 1; Be = 1; Ce = 1, we have

w(k) = w(k � 1) + e(k) =) �w(k) = e(k)

This means w(k) is a random step.

We will assume the above random step model for w(k)

for simplicity.
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Standard Model (Continued) Combining the two equations

give

X(k + 1) �=

2
664
x(k + 1)

w(k + 1)

3
775 =

2
664
Fts(x(k); u(k); d(k); w(k))

w(k)

3
775+

2
664
0

I

3
775 e(k)

where Fts(x(k); u(k); d(k); w(k)) stands for the state vector

resulting from integrating the ODE for one sample interval (from

t = k to t = k + 1) with initial condition x(k) and constant inputs

of u(t) = u(k) and d(t) = d(k) and w(t) = w(k).

We can also write the measurement equation as

ŷ(k) = g(x(k)) + �(k)
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Overview of Linearization Based NLMPC
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State Estimation

The following two steps are performed at t = k:

� Model Prediction

X(kjk � 1) �=

2
664
x(kjk � 1)

w(kjk � 1)

3
775

=

2
664
Fts(x(k � 1jk � 1); u(k � 1); d(k � 1); w(k � 1jk � 1))

w(k � 1jk � 1)

3
775

Hence, this step involves nonlinear ODE integration for one

sample interval.

� Measurement Correction

X(kjk) = X(kjk � 1) +Kk(ŷ(k)� y(kjk � 1)| {z }
prediction error

)

where y(kjk � 1) = g(X(kjk � 1)).

Kk is the update gain (\�lter gain"):

{ Linear update structure is retained (suboptimal).

{ The update gain needs to be varied with time due to the

nonlinearity.

{ The gain matrix can be computed using the model

linearized with respect to the current state estimate and

using linear �ltering theory =) Extended Kalman Filter

(see the attached paper by Lee and Ricker for details).
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Prediction

One can follow the similar argument as before and construct
2
666666666664

x(k + 1jk)

x(k + 2jk)
...

x(k + pjk)

3
777777777775
=

2
666666666664

Fts(x(kjk); u(k � 1); d(k); w(kjk))

Fts(x(k + 1jk); u(k � 1); d(k); w(k + 1jk))
...

Fts(x(k + p� 1jk); u(k � 1); d(k); w(k + p� 1jk))

3
777777777775

| {z }
F : from ODE integration

+

2
666666666664

Bu
k 0 � � � 0

AkB
u
k +Bu

k Bu
k � � � 0

... ... . . . ...
Pp
j=1A

j�1
k Bu

k

Pp�1
j=1 A

j�1
k Bu

k � � �
Pp�m+1
j=1 A

j�1
k Bu

k

3
777777777775

2
666666666664

�u(kjk)

�u(k + 1jk)
...

�u(k +m� 1jk)

3
777777777775

| {z }
SU
k
: dynamic matrix

where w(k + ijk) = w(kjk) and Ak and B
u
k are computed through

� Linearization

~Ak =

0
@@f
@x

1
A
x(kjk);u(k�1);d(k);w(kjk)

; ~Bk =

0
@@f
@u

1
A
x(kjk);u(k�1);d(k);w(kjk)

� Discretization

Ak = exp
�
~Ak � ts

�
; Bu

k =
Z ts

0

�
~Ak � �

�
d� � ~Bu

k

Denote the above as

X (k + 1jk) = F(x(kjk); u(k � 1); d(k); w(kjk))

+SU
k (x(kjk); u(k � 1); d(k); w(kjk))�U(k)
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Summary

At t = k, we are given the previous estimate

(x(k � 1jk � 1); w(k � 1jk � 1)), previous inputs

d(k � 1); u(k � 1), and new measurements ŷ(k), d(k). The

following steps need to be performed:

1. 1-Step Model Integration: Integrate the ODE for one

time interval to obtain

X(kjk � 1) �=

2
664
x(kjk � 1)

w(kjk � 1)

3
775

=

2
664
Fts(x(k � 1jk � 1); u(k � 1); d(k � 1); w(k � 1jk � 1))

w(k � 1jk � 1)

3
775

2. Model Linearization: Linearize the ODE and the

measurement model with respsect to X(k � 1jk � 1) and

X(kjk � 1).

3. Filter Gain Computation: Obtain the �lter gain matrix

Kk using the linearized model matrices (see the details in the

attached paper by Lee and Ricker).

4. Measurement Update of X(k): Update the estimate for

X(k) based on the model prediction error:

X(kjk) = X(kjk � 1) +Kk(ŷ(k)� y(kjk � 1)| {z }
prediction error

)
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5. Model Linearization: Linearize the ODE model again with

respect to the updated state X(kjk).

6. Dynamic Matrix Computation: Use the linearized

model matrices to construct the dynamic matrix

SU
k (x(kjk); u(k � 1); d(k); w(kjk)) according to the formula

given earlier.

7. p-Step Model Integration: Integrate the ODE model for

p time steps starting from x(kjk) and keeping inputs constant

at u(t) = u(k � 1), d(t) = d(k) and w(t) = w(kjk) for

k � t < k + p.

The prediction equation is

X (k + 1jk = F(x(kjk); u(k � 1); d(k); w(kjk))

+SU
k (x(kjk); u(k � 1); d(k); w(kjk))�U(k)

8. Input Computation: Solve QP to �nd U(k).

9. Input Implementation: Implement

u(k) = u(k � 1) + u(kjk).
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2.4 EXAMPLE: PAPER MACHINE HEADBOX

CONTROL

Problem Description

N : consistency of stock entering the feed tank.

Nw: consistency of recycled white water.

Gp: 
owrate of stock entering the feed tank.

Gw: 
owrate of recycled white water.

H1: liquid level in the feed tank.

H2: liquid level in the headbox.

N1: consistency in the feed tank.

N2: consistency in the headbox.
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Some Speci�c Design Information

� ODE model for the above process is bilinear (see Lee and

Ricker for model equations).

� We model Nw unmeasured disturbance as random walk, i.e.,

xe(k + 1) = xe(k) + e(k)

Nw(k) = xe(k)

� We used the extended Kalman �lter for state update.

� We used the following parameters for control computation:

p = 5; m = 3; �y = diagf1; 1; 0g; �u = �diagf1; 1g
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2.5 ADDITIONAL ISSUES

Re�nement

� State Estimation:

{ Computation of state estimates based on the full nonlinear

model (e.g., moving horizon estimation) instead of the

linearized model. Again, this requires NLP

(computationally much more expensive).

� Input Computation:

{ Repetition of linearization and input trajectory calculation

for better linearized model (=) better dynamic matrix).

{ Replace linearized model based prediction equation

X (k + 1jk) = F(x(kjk); u(k � 1); d(k); w(kjk))

+SUk (x(kjk); u(k � 1); d(k); w(kjk))�U(k)

with nonlinear algebraic constraints obtained from

discretization (e.g., orthogonal collocation). This requires

NLP instead of QP in control computation, however.

Alternatives

� Gain scheduling: separate model for di�erent operating

regimes.

� Adaptive MPC: recursive update of model parameters.
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2.6 RECURSIVE PARAMETER ESTIMATION

Adaptation via Recursive Parameter Identi�cation

State space representation of general model structure for

parametric identi�cation is

X(k + 1) = �(�)X(k) + �u(�)�u(k) + �d(�)�d(k) + �e(�)e(k)

ŷ(k) = �X(k) + �(k)

� Initiation Step: Initial parameter estimate, ��
0
is obtained using

I/O data from PRBS tests.

+

X(k + 1) = �(��
0
)X(k) + �u(�

�
0
)�u(k) + �d(�

�
0
)�d(k) + �e(�

�
0
)e(k)

ŷ(k) = �X(k) + �(k)

� kth Sampling time: Given (k � 1)th parameter estimate ��
k�1

,

��k is obtained using ��k�1; u(k � 1); d(k � 1); ŷ(k � 1).

+

X(k + 1) = �(��
k
)X(k) + �u(�

�
k
)�u(k) + �d(�

�
k
)�d(k) + �e(�

�
k
)e(k)

ŷ(k) = �X(k) + �(k)
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2.7 ADAPTIVE MPC FORMULATION

Overview
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Some Speci�c Design Information

� ODE model for the above process is bilinear (see Yoon et al.

for model equations).

� Recursive least-square estimation technique is employed for

parameter adpatation

� No input and state constraints are imposed.

� The following horizons for objective and control are used:

p = 22; m = 20
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2.9 POTENTIAL IMPROVEMENTS IN SYSTEM

IDENTIFICATION

Potential Improvements for Plant Testing

� Simultaneous Excitation of Di�erent Input Channels: It is

better to assimilate the situation a multivariable control system

adjusts inputs altogether. An important issue then is

how to coordinate inputs so that useful information

is derived without causing problems to the operation.

Perturbing each channel with an independent random signal

seldom meets this requirement.

� Control-Relevancy: Since the ultimate purpose of a model is

closed-loop control, the test should generate information that

are important for control. Note that model uncertainty

distribution is a�ected by information content in the data.

Hence, the essence of the problem is

how to distribute model uncertainty optimally for

closed-loop control through data generation.
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Potential Improvements for Plant Testing

(Continued)

Plant-Friendliness: Plant tests during normal operations must

be designed not to destroy the integrity of the on-going

operation. This is particularly important when multiple input

channels are to be excited simultaneously. In this case, one may

lack intuition on how perturbations a�ect the key process

variables. Plant friendliness can be achieved by incorporating

{ input contraints (magnitude, rate, etc.)

{ output constraints (formulated in a probabilistic manner)
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Potential Improvements for Model Fitting

� Deterministic vs. Stochastic Identi�cation: Deterministic

identi�cation is often adopted. However, including stochastic

components can

{ improve the accuracy of the deterministic part.

{ yield a disturbance model useful for prediction.

� SISO / MISO vs. MIMO Identi�cation:

1. SISO or MISO identi�cation is usually adopted but ignores

the often-existing correlation among di�erent output

channels.

2. MIMO identi�cation

{ can potentially give a more accurate determinstic model,

since disurbance e�ects are described more realistically.

{ allows cross-channel feedback update if the stochastic

part is used for prediction.

{ is much more di�cult in general.

{ su�ers from identi�ability problems and numerical

di�culties (e.g., local minima) if time series models are

used. There are so called subspace identi�cation

algorithms that allow direct construction of a

state-space model in the following form:

x(k + 1) = Ax(k) +Bu(k) +K"(k)

y(k) = Cx(k) + "(k)
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Use of Historical Data

� Often times, disturbance model used for control is assumed.

This model may not be useful for control if the assumed

disturbance model is unrealistic.

� Evenif disturbance model used for control is identi�ed from

plant test data, it may not be useful for control provided that

the data collected during the plant test do not contain the

plant's representative disturbances.

� Plant's historical data are plenty and should contain the e�ect

of various disturbances that enter the plant. Using such data

and the deterministic system model, one can construct a

stochastic model for residuals in the form of

x(k + 1) = Ax(k) +K"(k)

y(k) = Cx(k) + "(k)

This can be combined with the deterministic model.
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