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Part IV

ADVANCED ISSUES IN MPC
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Chapter 1

STATE-SPACE MODEL

PREDICTIVE CONTROL

1.1 SHORTCOMINGS OF CURRENT INDUSTRIAL

MPC PRACTICE

� Truncated Step Response Model:

{ Many model coe�cients have to be stored:

Example) 5 x 5 system with 30 step response coe�cients on each

gives 750 coe�cients.

The problem is much worse for systems with mixed time scale

dynamics (e.g. a high-purity distillation column) where sample

time needs to be chosen according to the fast time-scale dynamics,

but the settling time is determined by the slow time-scale

dynamics.

This limits the size of application.

{ Unstable systems cannot be handled.

{ Truncation error is unavoidable.
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� Disturbance estimation:

{ Step disturbance is assumed and, thus, drift, ramp, oscillatory

disturbances cause poor performance.

{ No cross channel update.

{ Unmeasured outputs are not updated.

These shortcomings motivate development of

MPC based on a general state-space model.
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1.2 STATE SPACE MPC

State Space Plant Model

Consider state space model of the plant obtained from either fundamental

ODE's or system identi�cation:

x(k + 1) = Ax(k) +Buu(k) +Bdd(k)

y(k) = Cx(k)

+ di�erencing

�x(k + 1) = A�x(k) +Bu�u(k) + Bd�d(k)

�y(k) = C�x(k)

x(k): state

u(k): control input

y(k): measurement output

d(k): measured disturbances

� The number of coe�cients is reduced.

Example) For 5 x 5 system with 10 states, only 200 coe�cients need to

be stored
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� For appropriate choice of A, state space model can represent unstable

process.

� No truncation error.

Prediction with State Space Plant Model

If we constrain that �u(k +mjk) = � � � = �u(k + p� 1jk) = 0,
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Rewriting the above,

+

Y(k + 1jk) = SXX(kjk) + Sd�d(k) + SU�U(k)
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1.3 DISTURBANCE ESTIMATION VIA STATE

ESTIMATION

Motivation

In current industrial MPC algorithms,

� models are run open-loop

� feedback is entered into the prediction statically (no memory of the

past feedbakc)

In disturbance estimation via state estimation

� unmeasured disturbance e�ects are included in the memory (state

vector) and update is made directly to the states.

� fuller use of feedback measurement is allowed.
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