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Chapter 4

RANDOM VARIABLES

4.1 INTRODUCTION

What Is Random Variable?

We are dealing with

� a physical phenomenon which exhibits randomness.

� the outcome of any one occurence (trial) cannot be predicted.

� the probability of any subset of possible outcomes is well-de�ned.

We ascribe the term random variable to such a phenomenon. Note that a

random variable is not de�ned by a speci�c number; rather it is de�ned by

the probabilities of all subsets of the possible outcomes. An outcome of a

particular trial is called a realization of the random variable.

An example is outcome of rolling a dice. Let x represent the outcome (not

of a particular trial, but in general). Then, x is not represented by a single

outcome, but is de�ned by the set of possible outcomes (f1; 2; 3; 4; 5; 6g) and
the probability of the possible outcome(s) (1/6 each). When we say x is 1

or 2 or so on, we really should say a realization of x is such.
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A random variable can be discrete or continuous. If the outcome of a

random variable belongs to a discrete space, the random variable is discrete.

An example is the outcome of rolling a dice. On the other hand, if the

outcome belongs to a continuous space, the random variable is continuous.

For instance, composition or temperature of a distillation column can be

viewed as continuous random variables.

What Is Statistics?

Statistics deals with the application of probability theory to real problems.

There are two basic problems in statistics.

� Given a probabilistic model, predict the outcome of future trial(s). For

instance one may say:

choose the prediction x̂ such that expected value of (x� x̂)2 is

minimized.

� Given collected data, de�ne / improve a probabilistic model.

For instance, there may be some unknown parameters (say �) in the

probabilistic model. Then, given data X generated from the particular

probabilistic model, one should construct an estimate of � in the form

of �̂(X). For example, �̂(X) may be constructed based on the objective

of minimizing expected value of k� � �̂k22.
Another related topic is hypothesis testing, which has to do with

testing whether a given hypothesis is correct (i.e, how correct de�ned

in terms of probability), based on available data.

In fact, one does both. That is, as data come in, one may continue to

improve the probabilistic model and use the updated model for further

prediction.
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4.2 BASIC PROBABILITY CONCEPTS

4.2.1 PROBABILITY DISTRIBUTION, DENSITY: SCALAR

CASE

A random variable is de�ned by a function describing the probability of the

outcome rather than a speci�c value. Let d be a continuous random

variable (d 2 R). Then one of the following functions is used to de�ne d:

� Probability Distribution Function

The probability distribution function F (�; d) for random variable d is

de�ned as

F (�; d) = Prfd � �g (4.1)

F(ζ ;d)

ζ

where Pr denotes the probability. Note that F (�; d) is monotonically

increasing with � and asymptotically reaches 1 as � approaches its

upper limit.
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� Probability Density Function

The probability density function P(�; d) for random variable d is

de�ned as

P(�; d) = dF (�; d)

d�
(4.2)

��
��

0 a b ζ

P(ζ ;d)

Note that Z 1
�1

P(�; d)d� =
Z 1
�1

dF (�; d) = 1 (4.3)

In addition,

Z b

a
P(�; d) d� =

Z b

a
dF (�; d) = F (b; d)� F (a; d) = Prfa < d � bg (4.4)

Example: Guassian or Normally Distributed Variable

P(�; d) = 1p
2��2

exp

8<
:�

1

2

 
� �m

�

!29=
; (4.5)

���
���
���

m-σ m m+σ ζ

P(ζ ;d)

68.3%

Note that this distribution is determined entirely by two parameters (the

mean m and standard deviation �).

82



c
1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

4.2.2 PROBABILITY DISTRIBUTION, DENSITY: VECTOR

CASE

Let d =
�
d1 � � � dn

�T
be a continuous random variable vector(d 2 Rn).

Now we must quantify the distribution of its individual elements as well as

their correlations.

� Joint Probability Distribution Function

The joint probability distribution function F (�1; � � � ; �n; d1; � � � ; dn) for
random variable vector d is de�ned as

F (�1; � � � ; �n; d1; � � � ; dn) = Prfd1 � �1; � � � ; dn � �ng (4.6)

Now the domain of F is an n-dimensional space. For example, for

n = 2, F is represented by a surface. Note that

F (�1; � � � ; �n; d1; � � � ; dn)! 1 as �1; � � � ; �n !1.

� Joint and Marginal Probability Density Function

The joint probability density function P(�1; � � � ; �n; d1; � � � ; dn) for
random variable vector d is de�ned as

P(�1; � � � ; �n; d1; � � � ; dn) = @nF (�; d)

@�1; � � � ; �n (4.7)
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For convenience, we may write P(�; d) to denote

P(�1; � � � ; �n; d1; � � � ; dn). Again,
R b1
a1
� � � R bnan P(�1; � � � ; �n; d1; � � � ; dn) d�1 � � � d�n

= Prfa1 < d1 � b1; � � � ; an < dn � bng
(4.8)

Naturally,

Z 1
�1

; � � � ;
Z 1
�1

P(�1; � � � ; �n; d1; � � � ; dn)d�1 � � � d�n = 1 (4.9)

We can easily derive the probability density of individual element from

the joint probability density. For instance,

P(�1; d1) =
Z 1
�1

; � � � ;
Z 1
�1

P(�1; � � � ; �n; d1; � � � ; dn) d�2 � � � d�n (4.10)

This is called marginal probability density.

While the joint probability density (or distribution) tells us the

likelihood of several random variables achieving certain values

simultaneously, the marginal density tells us the likelihood of one

element achieving certain value when the others are not known.

Note that in general

P(�1; � � � ; �n; d1; � � � ; dn) 6= P(�1; d1) � � � P(�n; dn) (4.11)

If

P(�1; � � � ; �n; d1; � � � ; dn) = P(�1; d1) � � � P(�n; dn) (4.12)

d1; � � � ; dn are called mutually independent.

Example: Guassian or Jointly Normally Distributed Variables
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Suppose that d �= [d1 d2]
T is a Gaussian variable. The density takes the

form of

P(�1; �2; d1; d2) =
1

2��1�2(1� �2)1=2
exp

8<
:�

1

2(1� �2)

2
4
 
�1 �m1

�1

!2

�2�(�1 �m1)(�2 �m2)

�1�2
+
 
�2 �m2

�2

!235
9=
; (4.13)

Note that this density is determined by �ve parameters (the means m1;m2,

standard deviations �1; �2 and correlation parameter �). � = 1 represents

complete correlation between d1 and d2, while � = 0 represents no

correlation.

It is fairly straightforward to verify that

P(�1; d1) =
Z 1
�1

P(�1; �2; d1; d2) d�2 (4.14)

=
1q
2��21

exp

8<
:�

1

2

 
�1 �m1

�1

!29=
; (4.15)

P(�2; d2) =
Z 1
�1

P(�1; �2; d1; d2) d�1 (4.16)

=
1q
2��22

exp

8<
:�

1

2

 
�2 �m2

�2

!29=
; (4.17)

Hence, (m1; �1) and (m2; �2) represent parameters for the marginal density

of d1 and d2 respectively. Note also that

P(�1; �2; d1; d2) 6= P(�1; d1)P(�2; d2) (4.18)
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except when � = 0.

General n-dimensional Gaussian random variable vector d = [d1; � � � ; dn]T
has the density function of the following form:

P(�; d) �= P(�1; � � � ; �n; d1; � � � ; dn) (4.19)

=
1

(2�)
n

2 jPdj1=2 exp
(
�1

2
(� � �d)TP�1d (� � �d)

)
(4.20)

where the parameters are �d 2 Rn and Pd 2 Rn�n. The signi�cance of these

parameters will be discussed later.

4.2.3 EXPECTATION OF RANDOM VARIABLES AND

RANDOM VARIABLE FUNCTIONS: SCALAR CASE

Random variables are completely characterized by their distribution

functions or density functions. However, in general, these functions are

nonparametric. Hence, random variables are often characterized by their

moments up to a �nite order; in particular, use of the �rst two moments is

quite common.

� Expection of Random Variable Fnction

Any function of d is a random variable. Its expectation is computed as

follows:

Eff(d)g �=
Z 1
�1

f(�)P(�; d) d� (4.21)

� Mean

�d �= Efdg =
Z 1
�1

�P(�; d) d� (4.22)

The above is called mean or expectation of d.

� Variance
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Varfdg �= Ef(d� �d)2g =
Z 1
�1

(� � �d)2P(�; d) d� (4.23)

The above is the \variance" of d and quanti�es the extent of d

deviating from its mean.

Example: Gaussian Variable

For Gaussian variable with density

P(�; d) = 1p
2��2

exp

8<
:�

1

2

 
� �m

�

!29=
; (4.24)

it is easy to verify that

�d �= Efdg =
Z 1
�1

�
1p
2��2

exp

8<
:�

1

2

 
� �m

�

!29=
; d� = m (4.25)

Varfdg �= Ef(d� �d)2g =
Z 1
�1

(� �m)2
1p
2��2

exp

8<
:�

1

2

 
� �m

�

!29=
; d� = �2

(4.26)

Hence, m and �2 that parametrize the normal density represent the mean

and the variance of the Gaussian variable.

4.2.4 EXPECTATION OF RANDOM VARIABLES AND

RANDOM VARIABLE FUNCTIONS: VECTOR CASE

We can extend the concepts of mean and variance similarly to the vector

case. Let d be a random variable vector that belongs to Rn.

�d` = Efd`g =
Z 1
�1

�`P(�`; d`) d�` (4.27)

=
Z 1
�1

� � �
Z 1
�1

�`P(�1; � � � ; �n; d1; � � � ; dn) d�1; � � � ; d�n

Varfd`g = Ef(d` � �d`)
2g =

Z 1
�1

(�` � �d`)
2P(�`; d`) d�` (4.28)
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=
Z 1
�1

� � �
Z 1
�1

(�` � �d`)
2P(�1; � � � ; �n; d1; � � � ; dn) �1; � � � ; d�n

In the vector case, we also need to quantify the correlations among di�erent

elements.

Covfd`; dmg = Ef(d` � �d`)(dm � �dm)g (4.29)

=
Z 1
�1

� � �
Z 1
�1

(�` � �d`)(�m � �dm)P(�1; � � � ; �n; d1; � � � ; dn) d�1; � � � ; d�n

Note that

Covfd`; d`g = Varfd`g (4.30)

The ratio

� =
Covfd`; dmgq

Varfd`gVarfdmg
(4.31)

is the correlation factor. � = 1 indicates complete correlation (d` is

determined uniquely by dm and vice versa). � = 0 indicates no correlation.

It is convenient to de�ne covariance matrix for d, which contains all

variances and covariances of d1; � � � ; dn.

Covfdg = Ef(d� �d)(d� �d)Tg (4.32)

=
Z 1
�1

� � �
Z 1
�1

(� � �d)(� � �d)TP(�1; � � � ; �n; d1; � � � ; dn) d�1; � � � ; d�n

The (i; j)th element of Covfdg is Covfdi; djg. The diagonal elements of

Covfdg are variances of elements of d. The above matrix is symmetric since

Covfdi; djg = Covfdj; dig (4.33)

Covariance of two di�erent vectors x 2 Rn and y 2 Rm can be de�ned

similarly.

Covfx; yg = Ef(x� �x)(y � �y)Tg (4.34)
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In this case, Covfx; yg is an n�m matrix. In addition,

Covfx; yg = (Covfy; xg)T (4.35)

Example: Gaussian Variables { 2-Dimensional Case

Let d = [d1 d2]
T and

P(�; d) =
1

2��1�2(1� �2)1=2
exp

8<
:�

1

2(1� �2)

2
4 �1 �m1

�1

!2
(4.36)

�2�(�1 �m1)(�2 �m2)

�1�2
+
 
�2 �m2

�2

!235
9=
;

Then,

Efdg =
Z 1
�1

Z 1
�1

2
64 �1

�2

3
75P(�; d) d�1d�2 (4.37)

=

2
64 m2

m2

3
75

Similarly, one can show that

Covfdg =
Z 1
�1

Z 1
�1

2
64 �1 �m1

�2 �m2

3
75 � (�1 �m1) (�2 �m2)

�
P(�; d) d�1d�2

=

2
64 �21 �1�2�

�1�2� �22

3
75 (4.38)

Example: Gaussian Variables { n-Dimensional Case

Let d = [d1 � � � dn]T and

P(�; d) = 1

(2�)
n

2 jPdj1=2 exp
(
�1

2
(� � �d)TP�1d (� � �d)

)
(4.39)
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Then, one can show that

Efdg =
Z 1
�1

� � �
Z 1
�1

�P(�; d) d�1; � � � ; d�n = �d (4.40)

Covfdg =
Z 1
�1

� � �
Z 1
�1

(� � �d)(� � �d)TP(�; d) d�1; � � � ; d�n = Pd(4.41)

Hence, �d and Pd that parametrize the normal density function P(�; d)
represent the mean and the covariance matrix.

Exercise: Verify that, with

�d =

2
64 m1

m2

3
75 ; Pd =

2
64 �21 �1�2�

�1�2� �22

3
75 (4.42)

one obtains the expression for normal density of a 2-dimensional vector

shown earlier.

NOTE: Use of SVD for Visualization of Normal Density

Covariance matrix Pd contains information about the spread (i.e., extent of

deviation from the mean) for each element and their correlations. For

instance,

Varfd`g = [Covfdg]`;` (4.43)

�fd`; dmg =
[Covfdg]`;mq

[Covfdg]`;` [Covfdg]m;m

(4.44)

where [�]i;j represents the (i; j)th element of the matrix. However, one still

has hard time understanding the correlations among all the elements and

visualizing the overall shape of the density function. Here, the SVD can be

useful. Because Pd is a symmetric matrix, it has the following SVD:

Pd
�= Ef(d� �d)(d� �d)Tg (4.45)

= V �V T (4.46)
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=
�
v1 � � � vn

�
2
666664
�1

. . .

�n

3
777775

2
666664
vT1
...

vTn

3
777775 (4.47)

Pre-multiplying V T and post-multiplying V to both sides, we obtain

EfV T (d� �d)(d� �d)TV g =

2
666664
�1

. . .

�n

3
777775 (4.48)

Let d� = V Td. Hence, d� is the representation of d in terms of the coordinate

system de�ned by orthonormal basis v1; � � � ; vn. Then, we see that

Ef(d� � �d�)(d� � �d�)Tg =

2
666664
�1

. . .

�n

3
777775 (4.49)

The diagonal covariance matrix means that every element of d� is

completely independent of each other. Hence, v1; � � � ; vn de�ne the coordiate

system with respect to which the random variable vector is independent.

�21; � � � ; �2n are the variances of d� with respect to axes de�ned by v1; � � � ; vn.

Exercise: Suppose d 2 R2 is zero-mean Gaussian and

Pd =

2
64 20:2 19:8

19:8 20:2

3
75 =

2
64
p
2

2

p
2

2p
2

2
�
p
2

2

3
75
2
64 10 0

0 0:1

3
75
2
64
p
2

2

p
2

2p
2

2
�
p
2

2

3
75 (4.50)

Then, v1 = [
p
2

2

p
2

2
]T and v2 = [

p
2

2
�

p
2

2
]T . Can you visualize the overall

shape of the density function? What is the variance of d along the (1,1)

direction? What about along the (1,-1) direction? What do you think the

conditional density of d1 given d2 = � looks like? Plot the densities to verify.
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