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Chapter 2

BASICS OF LINEAR SYSTEMS

2.1 STATE SPACE DESCRIPTION

State Space Model Development

Consider fundamental ODE model:
dx
Fti = f (xf y Uf )
yr = g(zy)
xf. state vector,
uy: Input vector

yr. output vector
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State Space Model Development (Continued)

J linearization w.r.t. an equilibrium (z, @)

dr df of
= (of) o+ (3L)

_ (99
¥y = 3xf 55

where v =z — T, u = uy — U.
|} discretization

v(k+1) = Az(k) + Byu(k)
y(k) = Cu(k)
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State Space Description of Linear Systems

Consider the linear system described by the state equation:
z(k+1) = Az(k) + Bu(k)

y(k) = Cx(k)
Take z-Transformation
2X(2) = AX(2) + BU(z)

Y(2) =CX(2)

Y
Y(z) = C(zI — A)'BU(2)

Solution to Linear System:

v(k) = A"2(0)+ 'S A" Bui)
1=0

32



©1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Transfer Function

Consider the system described by transfer function:

Y(2)

biz" V4 byt 4+ b,

U(z)

2"+ a2 M4+ ay,

Then a state space description of the system is

where

r(k+1) = Az(k) + Bu(k)
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y(k) = Cx(k)
_ —ap —az - —ap-1 —ap
1 0 0 0
0 1 0 0 B =
0 0 1 0
C=[byby - by_y by
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Transfer Function (Continued)

Example: Consider the transfer function:

blz + b2
22+ a1z + as
Then
A — —ar —ay B— 1
1 0 0
C=101]
Then
—1
Y(Z) -1 Z+ar +a
U(Z) (Z ) [ 1 2] 1 .
—1
z —a9
I z4+ a4 1 biz + by
= [b1 bo]—; = —
Z¢+ a1z +as | Q Z4+ a1z + as
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Nonuniqueness of State Space Representation

Consider a transfer function G(z). Suppose the state space

description of G(z) is
z(k+1) = Az (k) + Bu(k)
y(k) = Cu(k)
Consider a different coordinate system for the state space defined by
w(k) =T 'z(k)

Y
w(k +1) = T ATw(k) + T Bu(k)
y(k) = CTw(k)
Then the transfer function of this system is

Y (2)

o CT(zI =T 'AT) 'T'B =CT[T (21 — AT 'T'B
Z

=CTT Y21 — A 'TT'B=C(2I — A)'B =G(z)

There exist a multitude of state space representations of a system
because there is a multiple infinity coordinate systems of the state

space.
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Definition of States

Given a time instant k, the state of the system is the minimal

information that are necessary to calculate the future response.

For difference equations, the concept of the state is the same as

that of the initial condition.

Y
State = x(k)
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Stability of Linear Systems

A state x is stable if

lim Az =0
n—oo

A linear system
r(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k)

is said to be stable if, for all x € R”,

lim Az =0
n—oo

mZ_aX|/\Z-(A)| <1
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2.2 FINITE IMPULSE RESPONSE MODEL

Impulse Responses of Linear Systems

k=1 |
y(k) = CA*z(0) + > CA* "' Bu(i)

1=0
Impulse Response Sequence {h(k)}: {y(k)} when z(0) = 0 and

| {1 if§ =0
u(i) = o .
0 ife#£0

u 1 ' I h x X x

B e E B

K K

{h(i) = CA'B}Y,
U

y(k) = h(k)z(0) + kg Bk —i — 1u(i)
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Impulse Responses of Linear Systems (Continued)

If linear system is stable,

S Im@)l = £ loa'B]| < oc

{h(i)}i2 ={CA'B}Z € &y

where /1 is the set of all absolutely summable sequences

lim [|A(3)]| = lim [|CA'B]| =0

71— 00
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Finite Impulse Response Models

I X
uk1x > h  ®
k| »
L e e e me b S H—

Kk K

Finite Impulse Response (FIR) Model: Model for which there exists
N such that

h(i)=0 Vi> N

Y
N . .
(k) = X hiijulk =i
Y
FIR model is also called moving average model.
Y

Need to store n past inputs: (u(i —1),---,u(i — NV))

For stable linear systems, h(7) — 0 as ¢ — 00.

4

FIR model is a good approximation of a stable linear system for

large enough V.
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