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1.3 SINGULAR VALUE DECOMPOSITION

Singular Values and Singular Vectors

Singular values of an m� n matrix A are the square roots of

minfm;ng eigenvalues of A�A.

�(A) =
r
�(A�A)

Right singular vectors of a matrix A are the eigenvectors of A�A.

�(A)2v �A�Av = 0

Left singular vectors of a matrix A are the eigenvectors of AA�.

�(A)2u�AA�u = 0

��(A) = the largest singular value of A = max
kxk=1

kAxk = kAk2
The largest possible size change of a vector by A.

�(A) = the smallest singular value of A = min
kxk=1

kAxk

The smallest possible size change of a vector by A.
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Singular Values and Singular Vectors (Continued)

Condition number: c(A) = �(A)
��(A)

A�v = ���u

Av = � u

+
�v (v): highest (lowest) gain input direction

�u (u): highest (lowest) gain observing direction
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Singular Value Decomposition

Let A 2 Rm�n. Suppose �i be singular values of A such that

�1 � �2 � � � � � �p � 0; p = minfm;ng

Let

U = [u1; u2; � � � ; um] 2 Rm�m V = [v1; v2; � � � ; vn] 2 Rn�n

where ui; vj denote left and right orthonormal singular vectors of

A, respectively. Then

A = U�V �; � =

2
664
�1 0

0 0

3
775 =

pX
i=1

�i(A)uiv
�
i

where

�1 =

2
666666666664

�1 0 � � � 0

0 �2 � � � 0
... ... � � � ...

0 0 � � � �p

3
777777777775

Consider y = Ax. Then � is simply the representation of A when x

and y are represented in the coordinate systems consisting of right

and left singular vectors, respectively.
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Singular Value Decomposition (Continued)

Example:

A =

2
664
0:8712 �1:3195

1:5783 �0:0947

3
775

+

U =
1p
2

2
664
1 �1

1 1

3
775 ; � =

2
664
2 0

0 1

3
775 ; V =

1

2

2
664
p
3 1

�1
p
3

3
775
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Principal Component Analysis

Given N n-dimensional vectors fx1; x2; � � � ; xNg, the principal
vector p is

p = arg min
kpk=1

NX
i=1

kxi � hxi; pipk2

= arg min
kpk=1

NX
i=1

�
hxi; xii � 2hxi; pi2 + hxi; pi2hp; pi

�

= arg min
kpk=1

NX
i=1

�hxi; pi
2

hp; pi = argmax
NX
i=1

hxi; pi2
hp; pi = argmax�(p)

where

�(p) =
NX
i=1

xTi pp
Txi

pTp
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Principal Component Analysis (Continued)

At the extremum,

0 =
1

2

d�

dp
=

NX
i=1

xix
T
i p

pTp
� NX

i=1

xTi pp
Txip

(pTp)2

+

0 =
NX
i=1

xix
T
i p�

NX
i=1

xTi pp
Txi

pTp
p = XXTp��p Singular Value Problem for X

where

X = [x1 x2 � � � xN ]; � =
NX
i=1

xTi pp
Txi

(pTp)2

The SVD of X is

X = P�
1

2V T = p1�
1

2

1u
T
1 + � � � + pn�

1

2
nu

T
n

where

P = [p1 p2 � � � pn]; V = [v1 v2 � � � vN ];
� = [diag[�

1

2

i ] 0] 0 = XTXv � �v

�
1

2

1 � � � � � �
1

2
n

The approximation of X using �rst m signi�cant principal vectors:

X � �X = �P ��
1

2 �UT = p1�
1

2

1u
T
1 + � � � + pm�

1

2
mu

T
m

where

�P = [p1 p2 � � � pm]; � = diag[�
1

2

i ]
m
i=1

�V = [v1 v2 � � � vm]
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Principal Component Analysis (Continued)

pTi X = pTi (p1�
1

2

1u
T
1 + � � � + pn�

1

2
nu

T
n ) = �

1

2

i u
T
i

+
�P TX = �UT

+
�X = �P �UT = �P �P TX

and the residual is

~X = X � �X = (I � �P �P T )X
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