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1.3 SINGULAR VALUE DECOMPOSITION

Singular Values and Singular Vectors

Singular values of an m X n matrix A are the square roots of

min{m, n} eigenvalues of A*A.

o(A) = [A(A*A)

Right singular vectors of a matrix A are the eigenvectors of A*A.
o(A)?v — A*Av =0
Left singular vectors of a matrix A are the eigenvectors of AA*.

o(A)*u — AA*u =0

d(A) = the largest singular value of A = max |Az|| = ||A]]2

The largest possible size change of a vector by A.

o(A) = the smallest singular value of A = ”n’|1|i£11 | Az||

The smallest possible size change of a vector by A.
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Singular Values and Singular Vectors (Continued)
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v (v): highest (lowest) gain input direction

@ (u): highest (lowest) gain observing direction
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Singular Value Decomposition

Let A € R"™*". Suppose o; be singular values of A such that
op>09>->0,>0, p=min{m,n}
Let
U =lup,ug, -, u, € R™™  V=[v,vy,--,v,] € R™"

where u;, v; denote left and right orthonormal singular vectors of

A, respectively. Then

> 0 p
A=UsV*, =" "= oi(Auv’

0 0 i=1

where ] ]
o 0 --- 0
0 e 0

=] 7

00 - g

Consider y = Az. Then X is simply the representation of A when z
and y are represented in the coordinate systems consisting of right

and left singular vectors, respectively.
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Singular Value Decomposition (Continued)

Example:
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Principal Component Analysis
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Given N n-dimensional vectors {z1,xs, - - -, xn}, the principal

vector p 1s
N
p=arg min ¥ ||z; — (z;, p)p|*
Ipll=1 i=1
N 2 2
= arg i, 32 (@i, i) = 2(w;, p)” + (1, p) (P, p))
N )2 N (7. p)\2
= arg min Y. _{zep) = argmax y._ (@i, p)” = arg max «(p)
lpl=1i=1 (p,p) =1 (P, p)
where .
Y. T pp” Ti
a(p) = S ST
() =X i
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Principal Component Analysis (Continued)

At the extremum,

ldae N SUZSUZT N olpple,
o o Qwilp  Joalppp
2dp = p'p = (plp)?
Y
N oz pp" v T .
0= Z T;X; Tp— Z = XX " p—Ap Singular Value Problem for X
plp
where
N oz pp'

X=|x129 -+ TN|, A=
o v i=1 (pTp)?

The SVD of X is

where
P:[p1p2 pn]7 V:[U1U2 UN];

10] 0=X"Xv— v

Spol—

A = [diag|);
> /\%

>~
o=
'V

The approximation of X using first m significant principal vectors:
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Principal Component Analysis (Continued)

1
pTX = pl(pAdul + -+ poddul) = Au?

U
Prx =0"

X = pPUt = pPtXx

and the residual is

JZ
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