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7.2.2 PARAMETER ESTIMATION VIA PREDICTION

ERROR MINIMIZATION

7.2.2.1 Prediction Error Method

The optimal one-step ahead predictor based on the model (7.1) can be

written as

y(kjk � 1) = G(q; �)u(k) +
�
I �H�1(q; �)

�
(y(k)�G(q; �)u(k)) (7.19)

By comparing (7.1) with (7.19), we see that the prediction error

(y(k)� y(kjk � 1)) is simply "(k), assuming that the model is perfect. Note

that
�
I �H�1(q; �)

�
contains at least one delay since I �H�1(1; �) = 0.

Hence, the right hand side does not require y(k) to be known.

Because the primary function of a model in control is to provide a

prediction of the future output behavior, it is logical to choose � such that

the prediction error resulting from the model is minimized for the available

data record. Let us denote the data record we have as (ŷ(1); � � � ; ŷN). Then,

this objective is formulated as

min
�

NX
k=1

kêpred(k; �)k
2
2 (7.20)

where êpred(k; �) = ŷ(k)� y(kjk � 1), and k � k2 denotes the Euclidean norm.

Use of other norms are possible, but the 2-norm is by far the most popular

choice. Using (7.19), we can write

êpred(k; �) = H�1(q; �) (ŷ(k)�G(q; �)u(k)) (7.21)

For certain model structures, the 2-norm minimization of prediction error is
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formulated as a linear least-squares problem. For example, for the ARX

structure, G(q; �) = B(q)
A(q) , and H(q; �) = 1

A(q) and

êpred(k; �) = A(q)ŷ(k)� B(q)u(k) (7.22)

= ŷ(k) + a1ŷ(k � 1) + � � �+ anŷ(k � n)� b1u(k � 1)� � � � � bmu(k �m)

Since êpred(k; �) is linear with respect to the unknown parameters, the

minimization of
PN
k=1 ê

2
pred(k; �) is a linear least squares problem.

Another such example is an FIR model with known disturbance

characteristics for which G(q; �) =
Pn
i=1 hiq

�i and H(q) contains no

unknown parameters. In this case

êpred(k; �) = ŷf(k)� h1uf(k � 1)� � � � � hnuf(k � n) (7.23)

where ŷf(k) = H�1(q)ŷ(k) and uf(k) = H�1(q)u(k). Again, the expression

is linear in the unknowns and the prediction error minimization (PEM) is a

linear least squares problem. If the noise model was 1
1�q�1H(q), then ŷf(k)

and uf(k) should be rede�ned as H�1(q)�ŷ(k) and H�1(q)�u(k)

respectively. The same observation applies to Laguerre or other orthogonal

expansion models.

PEM for other model structures such as the ARMAX and Box-Jenkins

structures is not a linear least squares problem and pseudo-linear regression

is often used for them.

7.2.2.2 Properties of Linear Least Squares Identi�cation

We saw that prediction error minimization for many model structures can

be cast as a linear regression problem. The general linear regression

problem can be written as
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ŷ(k) = �T (k)� + e(k; �) (7.24)

where ŷ is the observed output (or �ltered output), � is the regressor

vector, � is the parameter vector to be identi�ed, and e the residual error

(that depends on the choice of �). f�g(k) denotes the kth sample. In the

least squares identi�cation, � is found such that the sum of squares of the

residuals is minimized, i.e., �LSN = arg
n
min�

PN
k=1 e

2(k; �)
o
. We saw in the

previous section that 2-norm minimization of prediction error for certain

model structures can be cast in this form.

For a data set collected over N sample intervals, (7.24) can be written

collectively as the following set of linear equations:

ŶN = �N� + EN (7.25)

where

�N =
�
�(1) � � � �(N)

�T
(7.26)

ŶN =
�
ŷ(1) � � � ŷ(N)

�T
(7.27)

EN =
�
e(1) � � � e(N)

�T
(7.28)

The least squares solution is

�̂LSN = (�T
N�N)

�1�T
NYN (7.29)

Convergence

Let us assume that the underlying system (from which the data are
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generated) is represented by the model

y(k) = �T (k)�o + "(k) (7.30)

where �o is the true parameter vector (which is assumed to be well de�ned

since we are discussing the convergence here) and "(k) is a term due to

disturbance, noise, etc.

Some insight can be drawn by rewriting the least squares solution in the

following form:

�̂LSN =
h
1
N

PN
k=1 �(k)�

T (k)
i�1 1

N

PN
k=1 �(k)

h
�T (k)�o + "(k)

i

= �o +
h
1
N

PN
k=1 �(k)�

T (k)
i�1 1

N

PN
k=1 �(k)"(k)

(7.31)

A desirable property of �̂LSN is that under fairly mild assumptions it

converges to �o as the number of data points becomes large (N !1). Note

that the term 2
4 1
N

NX
k=1

�(k)�T (k)

3
5
�1

1

N

NX
k=1

�(k)"(k)

represents the error in the parameter estimate. Assume that

lim
N!1

0
@ 1

N

NX
k=1

�(k)�T (k)

1
A

exists. This is true if the input is a quasi-stationary signal. In order that

lim
N!1

2
4 1
N

NX
k=1

�(k)�T (k)

3
5
�1

1

N

NX
k=1

�(k)"(k) = 0 (7.32)

the following two conditions must be satis�ed:

1.

lim
N!1

1

N

NX
k=1

�(k)"(k) = 0 (7.33)
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2.

rank

8<
: lim
N!1

2
4 1
N

NX
k=1

�(k)�T (k)

3
5
9=
; = dimf�g (7.34)

The �rst condition is satis�ed if the regressor vector and the residual

sequences are uncorrelated. There are two scenarios under which this

condition holds:

� "(k) is a zero-mean white sequence. Since �(k) does not contain "(k),

Ef�(k)"(k)g = 0 and 1
N

PN
k=1 �(k)"(k)! 0 as N !1. In the

prediction error minimization, if the model structure is unbiased, "(k)

is white.

� �(k) and "(k)are independent sequences and one of them is zero-mean.

For instance, in the case of an FIR model (or an orthogonal expansion

model), �(k) contains inputs only and is therefore independent of "(k)

whether it is white or nonwhite. This means that the FIR parameters

can be made to converge to the true values even if the disturbance

transfer function H(q) is not known perfectly (resulting in nonwhite

prediction errors), as long as uf(k) is designed to be zero-mean and

independent of "(k). The same is not true for an ARX model since

�(k) contains past outputs that are correlated with a nonwhite "(k).

In order for the second condition to be satis�ed, limN!1

h
1
N

PN
k=1 �(k)�

T (k)
i

must exist and should be nonsingular. The rank condition on the matrix

limN!1

h
1
N

PN
k=1 �(k)�

T (k)
i
is called the persistent excitation condition as it

is closely related to the notion of order of persistent excitation (of an input

signal) that we shall discuss in Section 7.2.2.3.

Statistical Properties

Let us again assume that the underlying system is represented by (7.30).

We further assume that "(k) is an independent, identically distributed
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(i.i.d.) random variable sequence of zero mean and variance r". Then, using

(7.31), we can easily see that

Ef�̂LSN � �0g = E

8><
>:
1

N

0
@ NX
k=1

�(k)�T (k)

1
A
�1

1

N

NX
k=1

�(k)"(k)

9>=
>; = 0 (7.35)

and

Ef(�̂LSN � �o)(�̂
LS
N � �o)

Tg

=
�
1
N

PN
k=1 �(k)�

T (k)
��1 � 1

N2

PN
k=1 �(k)r"�

T (k)
� �

1
N

PN
k=1 �(k)�

T (k)
��1

]]

=
�
1
N

PN
k=1 �(k)�

T (k)
��1 r"

N

= r"(�
T
N�N)

�1

(7.36)

(7.35) implies that the least squares estimate is \unbiased." (7.36) de�nes

the covariance of the parameter estimate. This information can be used to

compute con�dence intervals. For instance, when normal distribution is

assumed, one can compute an ellipsoid corresponding to a speci�c

con�dence level.

7.2.2.3 Persistency of Excitation

In the linear least squares identi�cation, in order for parameters to converge

to true values in the presence of noise, we must have

rank

8<
: lim
N!1

1

N

NX
k=1

�(k)�T (k)

9=
; = dimf�g (7.37)

This condition is closely related to the so called persistency of excitation. A

signal u(k) is said to b persistently exciting of order n if the following

condition is satsi�ed:

rankfCn
ug = n (7.38)
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where

Cn
u = limN!1

1
N

PN
k=1

8>>>>>>>><
>>>>>>>>:

2
666666664

u(k � 1)u(k � 1) u(k � 1)u(k � 2) � � � u(k � 1)u(k � n)

u(k � 2)u(k � 1) u(k � 2)u(k � 2) � � � u(k � 2)u(k � n)
... . . . . . . ...

u(k � n)u(k � 1) u(k � n)u(k � 2) � � � u(k � n)u(k � n)

3
777777775

9>>>>>>>>=
>>>>>>>>;

(7.39)

The above is equivalent to requiring the power spectrum of u(k) to be

nonzero at n or more distinct frequency points between �� and �.

Now, suppose �(k) consists of past inputs and outputs. A necessary and

su�cient condition for (7.37) to hold is that:

u(k) is persistently exciting of order dimf�g.

This is obvious in the case that �(k) is made of n past inputs only (as in

FIR models). In this case,

lim
N!1

1

N

NX
k=1

�(k)�T (k) = Cn
u (7.40)

The condition also holds when �(k) contains �ltered past inputs

uf(k � 1); � � � ; uf(k � n) (where uf(k) = H�1(q)u(k)). Note that:

�uf (!) =
�u(!)

jH(ej!)j2
(7.41)

Hence, if u(k) is persistently exciting of order n, so is uf(k). What is not so

obvious (but can be proven) is that the above holds even when �(k)

contains past outputs.

An important conclusion that we can draw from this is that, in order to

assure convergence of parameter estimates to true values, we must design

the input signal u(k) to be persistently exciting of order dimf�g. A pulse is
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not persistently exciting of any order since the rank of the matrix C1
u for

such a signal is zero. A step signal is persistently exciting of order 1. A

single step test is inadequate in the presence of signi�cant disturbance or

noise since only one parameter may be identi�ed without error using such a

signal. Sinusoidal signals are persistently exciting of second order since their

spectra are nonzero at two frequency points. Finally, a random signal can

be persistently exciting of any order since its spectrum is nonzero over a

frequency interval. It is also noteworthy that a signal periodic with period n

can at most be persistently exciting of order n.

Violation of the persistent excitation condition does not mean that

obtaining estimates for parameters is impossible. It implies, however, that

parameters do not converge to true values no matter how many data points

are taken.

7.2.2.4 Frequency-Domain Bias Distribution Under PEM

The discussion of parameter convergence is based on the assumption that

there exists a \true" parameter vector. Even when the parameters converge

to their \best" values, it is still possible for the model to show signi�cant

bias from the true plant model if the model structure used for identi�cation

is not rich enough. For example, an FIR model with too few coe�cients

may di�er from the true system signi�cantly even with the best choice of

impulse response coe�cients. Understanding how the choice of input signal

a�ects distribution of model bias in the frequency domain is important,

especially for developing a model for closed-loop control purposes, since

accuracy of �t in certain frequency regions (e.g., cross-over frequency

region) can be more important than others.
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In the prediction error method, parameters are �tted based on the criterion

min
�

1

N

NX
k=1

ê2pred(k; �) (7.42)

where êpred(k; �) = H�1(q; �)fŷ(k)�G(q; �)u(k)g. Suppose the true system

is represented by

ŷ(k) = Go(q)u(k) +Ho(q)"(k) (7.43)

Then,

êpred(k; �) =
Go(q)�G(q; �)

H(q; �)
u(k) +

Ho(q)

H(q; �)
"(k) (7.44)

By Parseval's theorem,

lim
N!1

1

N

NX
k=1

ê2pred(k; �) (7.45)

=
Z �

��
�ê(!)d! (7.46)

=
Z �

��

0
B@
���Go(e

j!)�G(ej!; �)
���2 �u(!)

jH(ej!; �)j2
+

���Ho(e
j!)

���2

jH(ej!; �)j2
�"(!)

1
CAd!

where �ê(!) is the spectrum of êpred(k).

Note that, in the case that the disturbance model does not contain any

unknown parameter,

limN!1
1
N

PN
k=1 ê

2
pred(k; �)

=
R �
��

0
@���Go(e

j!)�G(ej!; �)
���2 �u(!)

jH(ej!)j
2 +

jHo(e
j!)j

2

jH(ej!)j
2 �"(!)

1
A d! (7.47)

Since the last term of the integrand is una�ected by the choice of �, we may

conclude that PEM selects � such that the L2-norm of the error

Go(q)�G(q; �) weighted by the �ltered input spectrum �uf (!) (where

uf(k) = H�1(q)u(k)) is minimized. An implication is that, in order to

obtain a good frequency response estimate at a certain frequency region,

the �ltered input uf must be designed so that its power is concentrated in

142



c
1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

the region. If we want good frequency estimates throughout the entire

frequency range, an input signal with a 
at spectrum (e.g., a sequence of

independent, zero mean random variables) is the best choice.

Frequency domain bias distribtuion can be made more 
exible by

minimizing the �ltered prediction error êfpred (
�= L(q)epred). In this case,

lim
N!1

1

N

NX
k=1

ê2fpred(k; �) (7.48)

=
Z �

��

0
B@
���Go(e

j!)�G(ej!; �)
���2 �u(!)

jL(ej!)j2 jH(ej!)j2
+

���Ho(e
j!)

���2

jL(ej!)j2 jH(ej!)j2
�"(!)

1
CA d!

Hence, by pre�ltering the data before the parameter estimation, one can

a�ect the bias distribution. This gives an added 
exibility when the input

spectrum cannot be adjusted freely.

Finally, we have based our argument on the case where the disturbance

model does not contain any parameter. When the disturbance model

contains some of the parameters, the noise spectrum jHo(e
j!)j2 does a�ect

the bias distribution. However, the qualitative e�ects of the input spectrum

and pre�ltering remain the same.

7.2.3 PARAMETER ESTIMATION VIA STATISTICAL

METHODS

In formulating the prediction error minimization, we did not require an

exact statistical description of the underlying plant. Prediction error

minimization is a logical criterion for parametric identi�cation regardless of

the true nature of the underlying plant (i.e., even if the assumed model

structure does not match the real plant exactly). In stochastic identi�cation,

a speci�c stochastic model is assumed for the underlying plant and plant

parameters are estimated in an optimal fashion based on some well-de�ned
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