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Chapter 6

STATE ESTIMATION

In practice, it is unrealistic to assume that all the disturbances and states

can be measured. In general, one must estimate the states from the

measured input / output sequences. This is called state estimation.

Let us assume the standard state-space system description we developed in

the previous chapter:

x(k + 1) = Ax(k) +Bu(k) + "1(k)

y(k) = Cx(k) + "2(k)
(6.1)

"1(k) and "2(k) are mutually independent white noise sequences of

covariances R1 and R2 respectively. The problem of state estimation is to

estimate x(k + i); i � 0, given fy(j); u(j); j � kg (i.e., inputs and outputs

up to the kth sample time). Estimating x(k + i) for i > 0 is called

prediction, while that for i = 0 is called �ltering. Some applications require

x(k + i); i < 0 to be estimated and this is referred to as smoothing.

There are many state estimation techniques, ranging from a simple

open-loop observer to more sophisticated optimal observers like the Kalman

�lter. Since state estimation is an integral part of a model predictive

controller, we examine some popular techniques in this chapter. These
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techniques are also useful for parameter estimation problems, such as those

arise in system identi�cation discussed in the next chapter.

An extremely important, but often overlooked point is the importance of

correct disturbance modelling. Simply adding white noises into the state

and output equations, as often done by those who misunderstand the role of

white noise in a standard system description, can result in extreme bias. In

general, to obtain satisfactory results, disturbances (or their e�ects) must

be modelled as appropriate stationary / nonstationary stochastic processes

and the system equations must be augmented with their describing

stochastic equations before a state estimation technique is applied.

6.1 LINEAR OBSERVER STRUCTURE

A linear observer for system (6.1) takes the form of

x̂(kjk � 1) = Ax̂(k � 1jk � 1) +Bu(k � 1)

x̂(kjk) = x̂(kjk � 1) +K(y(k)� x̂(kjk � 1))
(6.2)

In the above, x(ijj) represents an estimate of x(i) constructed using

measurements up to time j. The above equations can be used to construct

the �ltered estimate x̂(kjk) recursively.

Comments:

� In some applications, one may need to compute the one-step-ahead

prediction x̂(k + 1jk) rather than the �ltered estimate. For instance, in

a control application, the control computation may require one sample

period to complete and in this case, one may want to compute

x̂(k + 1jk) at time k in order to begin the computation for the control

input u(k + 1).
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Notice that (6.2) can be rewritten as a one-step-ahead predictor simply

by switching the order of the two equations:

x̂(kjk) = x̂(kjk � 1) +K(y(k)� x̂(kjk � 1))

x̂(k + 1jk) = Ax̂(kjk) + Bu(k)
(6.3)

� The free parameter in the above is K, which is called the observer gain

matrix. What remains to be discussed is how to choose K. In general,

it should be chosen so that the estimation error (xe(k)
�= x(k)� x̂(kjk)

or x̂e(k + 1) �= x(k + 1)� x̂(k + 1jk)) is minimized in some sense.

� Equations for error dynamics can be easily derived. For instance, the

equations for the �lter estimation error is

xe(k) = (A�KCA)xe(k � 1) + (I �KC)"1(k � 1) +K"2(k) (6.4)
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The above can be derived straightforwardly by replacing y(k) in the

observer equation (6.2) with CAx(k � 1) + CBu(k � 1) + C"1(k � 1).

The equation for prediction error x̂e(k) can be derived similarly as

x̂e(k + 1) = (A� AKC)x̂e(k) + "1(k � 1) +AK"2(k) (6.5)

� In some cases, it is advantageous to allow K to vary with time. This

results in a time varying observer.

6.2 POLE PLACEMENT

From (6.4), it is clear that the eigenvalues of the transition matrix A�KCA

determine how the estimation error propagates. For instance, one must take

care that all the eigenvalues lie strictly inside the unit circle in order to

ensure stable error dynamics (i.e., asymptotically vanishing initialization

error, �nite error variance, etc.). The eigenvalues of A�KCA are called

observer poles and determining K on the basis of prespeci�ed observer pole

location is called pole placement. For instance, if (C;A) is an observable

pair, the observer poles can be placed in an arbitrary manner through K.

One can also work with the one-step-ahead prediction error equation (6.5).

In this case one can let AK = K̂ and determine K̂ so that the eigenvalues

of A� K̂C are placed at desired locations. Again, with an observer system,

the eigenvalues can be placed at arbitrary locations.

Pole placement is most coveniently carried out by �rst putting the system

in an observer canonical form through an appropriate coordinate

transformation (given by the observability matrix). For instance, consider

the following observer canonical form for a single-input, single-output
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system:

x(k + 1) =

2
6666666666664

�a1 1 0 � � � 0

�a2 0 1 � � � 0
...

... . . . . . . ...

�an�1 0 0 � � � 1

�an 0 0 � � � 0

3
7777777777775
x(k) +

2
6666666666664

b1

b2
...

bn�1

bn

3
7777777777775
u(k)

y(k) =
�
1 0 � � � 0 0

�
x(k)

(6.6)

Then, assuming K = [k1 k2 � � � kn�1 kn]
T , we have

A�KC =

2
6666666666664

�(a1 + k1) 1 0 � � � 0

�(a2 + k2) 0 1 � � � 0
...

... . . . . . . ...

�(an�1 + kn�1) 0 0 � � � 1

�(an + kn) 0 0 � � � 0

3
7777777777775

(6.7)

The characteristic polynomial for the above matrix is

zn + (a1 + k1)z
n�1 + � � �+ (an�1 + kn�1)z + (an + kn) = 0 (6.8)

Hence, k1; � � � ; kn can be easily determined to place the roots at desired

locations.

6.3 KALMAN FILTER

An observer gain can also be determined from a stochastic optimal

estimation viewpoint. For example, the observer gain for the linear observer

structure can be chosen to minimize the variance of the estimation error.

The resulting estimator is the celebrated Kalman �lter, which has by far

been the most popular state estimation technique. When the additional

assumption is made that the disturbances are Gaussian, the Kalman �lter is
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indeed the optimal estimator (not just the optimal linear estimator).

6.3.1 KALMAN FILTER AS THE OPTIMAL LINEAR

OBSERVER

Note that the the linear observer (6.3) can be written in the following

one-step-ahead predictor form:

x̂(k + 1jk) = Ax̂(kjk � 1) + Bu(k) +AK(k)| {z }
K̂(k)

fy(k)� Cx̂(kjk � 1)g (6.9)

In the above, we allowed the observer gain to vary with time for generality.

Recall that the error dynamics for x̂e(k) = x(k)� x̂(kjk � 1) are given by

x̂e(k + 1) = (A� K̂(k)C)x̂e(k) + "1(k) + K̂(k)"2(k) (6.10)

Let

P (k) = Covfx̂e(k)g (6.11)

= E
�
(x̂e(k)�Efx̂e(k)g) (x̂e(k)� Efx̂e(k)g)

T
�

(6.12)

Assuming that the initial guess is chosen so that Efx̂e(0)g = 0,

Efx̂e(k)g = 0 for all k � 0 and

P (k + 1) =
n
x̂e(k + 1)x̂Te (k + 1)

o
(6.13)

= (A� K̂(k)C)P (k)(A� K̂(k)C)T + R1 � K̂(k)R2K̂
T (k)

In the above, we used the fact that x̂e(k); "1(k) and "2(k) in (6.10) are

mutually independent.

Now let us choose K(k) such that �TP (k+1)� is minimized for an arbitrary

choice of �. Since � is an arbitrary vector, this choice of K(k) minimizes
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the expected value of any norm of x̂e (including the 2-norm which represents

the error variance). Now, it is straightforward algebra to show that

�TP (k + 1)� = �T
�
AP (k)AT + R1 � K̂(k)CP (k)AT (6.14)

�AP (k)CTK̂T (k) + K̂(k)(R2 + CP (k)CT )K̂T (k)
�
�

Completing the square on the terms involving K̂(k), we obtain

�TP (k + 1)� = �T
��
K̂(k)� AP (k)CT (R2 + CP (k)CT )�1

� h
R2 + CP (k)CT

i

�
�
K̂(k)�AP (k)CT (R2 + CP (k)CT )�1

�T)
� (6.15)

+�T
h
AP (k)AT +R1 �AP (k)CT (R2 + CP (k)CT )�1CP (k)AT

i
�

Hence, K̂(k) minimizing the above is

K̂(k) = AP (k)CT (R2 + CP (k)CT)�1 (6.16)

and

P (k+1) = AP (k)AT +R1�AP (k)CT
�
R2 + CP (k)CT

�
�1
CP (k)AT (6.17)

Given x(1j0) and P (1), the above equations can be used along with (6.9) to

recursively compute x̂(k + 1jk). They are referred to as the time-varying

Kalman �lter equations.

Note:

� For detectable systems, it can be shown that P (k) converges to a

constant matrix �P as K !1. Hence, for linear time-invariant

systems, it is customary to implement an observer with a constant gain

matrix derived from �P according to (6.16). This is referred to as the

steady-state Kalman �lter.
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� Also, recall the relationship between the one-step-ahead predictor gain

K̂(k) and the �lter gain K(k) (K̂(k) = AK(k)). Hence,

K(k) = P (k)CT (R2 + CP (k)CT)�1 (6.18)

This gain can be used to implement a �lter of the form (6.2) that

recursively computes x̂(kjk) rather than x̂(k + 1jk).

6.3.2 KALMAN FILTER AS THE OPTIMAL ESTIMATOR

FOR GAUSSIAN SYSTEMS

In the previous section, we assumed a linear observer structure and posed

the problem as a parametric optimization where the expected value of the

estimation error variance is minimized with respect to the observer gain. In

fact, the Kalman �lter can be derived from an entirely probabilistic

argument, i.e., by deriving a Bayesian estimator that recursively computes

the conditional density of x(k).

Assume that "1(k) and "2(k) are Gaussian noise sequences. Then, assuming

x(0) is also a Gaussian variable, x(k) and y(k) are jointly-Gaussian

sequences. Now we can simply formulate the state estimation problem as

computing the conditional expectation Efx(k) j Y (k)g where

Y (k) = [yT (0); yT (1); � � � ; yT (k)]T . Let us denote Efx(i) j Y (j)g as x(ijj).

We divide the estimation into the following two steps.
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� Model Update: Compute Efx(k)jY (k � 1)g given

Efx(k � 1)jY (k � 1)g , P (k � 1jk � 1) , and u(k � 1).

Since x(k) = Ax(k � 1) +Bu(k � 1) + "1(k � 1) and "1(k � 1) is a

zero-mean variable independent of y(0); � � � ; y(k � 1),

x̂(kjk � 1) = E fAx(k � 1) + Bu(k � 1) + e(k � 1) j Y (k � 1)g

= AEfx(k � 1) j Y (k � 1)g+ Bu(k � 1) (6.19)

Hence, we obtain

x̂(kjk � 1) = Ax̂(k � 1jk � 1) + Bu(k � 1) (6.20)

In addition, note that

x(k)� x̂(kjk � 1) = A (x(k)� x̂(k � 1jk � 1)) + "1(k � 1) (6.21)

Therefore,

P (kjk � 1) = E
�
(x(k)� x̂(kjk � 1)) (x(k)� x̂(kjk � 1))T

�
(6.22)

= AP (k � 1jk � 1)AT + R1 (6.23)

Since the conditional density for x(k) given Y (k � 1) is Gaussian, it is

completely speci�ed by x̂(kjk � 1) and P (kjk � 1).

� Measurement Update: Compute Efx(k)jY (k)g given

Efx(k)jY (k � 1)g P (kjk � 1) and y(k).
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The conditional density Pfx(k) j Y (k)g is equivalent to the conditional

density Pfx(k) j y(k)g with the prior density of x(k) given instead by

Pfx(k) j Y (k � 1)g. Note that Pfx(k) j Y (k � 1)g is a Gaussian

density of mean x̂(kjk � 1) and covariance P (kjk � 1). In other words,

we view x(k) as a Gaussian variable of mean x̂(kjk � 1) and covariance

P (kjk � 1).

In addition, y(k) = Cx(k) + "2(k) and therefore is also Gaussian.

Efy(k)g = CEfx(k)g+ Ef"(k)g = Cx̂(kjk � 1)

E
�
(y(k)� Efy(k)g) (y(k)� Efy(k)g)T

�
= CP (kjk � 1)CT +R2

In fact, x(k) and y(k) are jointly Gaussian with the following

covariance:

E

8>><
>>:
2
64 x(k)� x̂(kjk � 1)

y(k)� y(kjk � 1)

3
75
2
64 x(k)� x̂(kjk � 1)

y(k)� y(kjk � 1)

3
75
T
9>>=
>>;

=

2
64 P (kjk � 1) P (kjk � 1)CT

CP (kjk � 1) CP (kjk � 1)CT + R2

3
75

(6.24)

Recall the earlier results for jointly Gaussian variables:

Efxjyg = Efxg+RxyR
�1
y (y �Efyg) (6.25)

Covfxjyg = Rx �RxyR
�1
y Ryx (6.26)

Applying the above to x(k) and y(k),

x̂(kjk) = Efx(k)jy(k)g (6.27)

= x̂(kjk � 1)

+P (kjk � 1)CT
�
CP (kjk � 1)CT + R2

�
�1

(y(k)� Cx̂(kjk � 1))

P (kjk) = Covfx(k)jy(k)g

= P (kjk � 1)� P (kjk � 1)CT
�
CP (kjk � 1)CT +R2

�
�1
CP (kjk � 1)
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In short, for Gaussian systems, we can compute the conditional mean and

covariance of x(k) recursively using

x̂(kjk � 1) = Ax̂(k � 1jk � 1) +Bu(k � 1)

x̂(kjk) = x̂(kjk�1)+P (kjk � 1)CT
�
CP (kjk � 1)CT + R2

�
�1

| {z }
K(k)

(y(k)�Cx̂(kjk�1))

and

P (kjk � 1) = AP (k � 1jk � 1)AT + R1

P (kjk) = P (kjk � 1)� P (kjk � 1)CT
�
CP (kjk � 1)CT +R2

�
�1
CP (kjk � 1)

Note that this above has a linear observer structure with the observer gain

given by the Kalman �lter equations derived earlier (P (kjk � 1) in the

above is P (k) in Eq. (6.16){(6.17)).
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