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Chapter 5

STOCHASTIC PROCESSES

A stochastic process refers to a family of random variables indexed by a

parameter set. This parameter set can be continuous or discrete. Since we

are interested in discrete systems, we will limit our discussion to processes

with a discrete parameter set. Hence, a stochastic process in our context is

a time sequence of random variables.

5.1 BASIC PROBABILITY CONCEPTS

5.1.1 DISTRIBUTION FUNCTION

Let x(k) be a sequence. Then, (x(k1); � � � ; x(k`)) form an `-dimensional

random variable. Then, one can de�ne the �nite dimensional distribution

function and the density function as before. For instance, the distribution

function F (�1; � � � ; �`;x(k1); � � � ; x(k`)), is de�ned as:

F (�1; � � � ; �`;x(k1); � � � ; x(k`)) = Prfx(k1) � �1; � � � ; x(k`) � �`g (5.1)

The density function is also de�ned similarly as before.

We note that the above de�nitions also apply to vector time sequences if
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x(ki) and �i's are taken as vectors and each integral is de�ned over the

space that �i occupies.

5.1.2 MEAN AND COVARIANCE

Mean value of the stochastic variable x(k) is

�x(k) = Efx(k)g =
Z
1

�1

�dF (�;x(k)) (5.2)

Its covariance is de�ned as

Rx(k1; k2) = Ef[x(k1)� �x(k1)][x(k2)� �x(k2)]
Tg

=
R
1

�1

R
1

�1
[�1 � �x(k1)][�2 � �x(k2)]

TdF (�1; �2;x(k1); x(k2))

(5.3)

The cross-covariance of two stochastic processes x(k) and y(k) are de�ned as

Rxy(k1; k2) = Ef[x(k1)� �x(k1)][y(k2)� �y(k2)]
Tg

=
R
1

�1

R
1

�1
[�1 � �x(k1)][�2 � �y(k2)]

TdF (�1; �2;x(k1); y(k2))

(5.4)

Gaussian processes refer to the processes of which any �nite-dimensional

distribution function is normal. Gaussian processes are completely

characterized by the mean and covariance.

5.1.3 STATIONARY STOCHASTIC PROCESSES

Throughout this book we will de�ne stationary stochastic processes as those

with time-invariant distribution function. Weakly stationary (or stationary

in a wide sense) processes are processes whose �rst two moments are
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time-invariant. Hence, for a weakly stationary process x(k),

Efx(k)g = �x 8k

Ef[x(k)� �x][x(k � �)� �x]Tg = Rx(�) 8k
(5.5)

In other words, if x(k) is stationary, it has a constant mean value and its

covariance depends only on the time di�erence � . For Gaussian processes,

weakly stationary processes are also stationary.

For scalar x(k), R(0) can be interpreted as the variance of the signal and
R(�)
R(0) reveals its time correlation. The normalized covariance R(�)

R(0) ranges from

0 to 1 and indicates the time correlation of the signal. The value of 1

indicates a complete correlation and the value of 0 indicates no correlation.

Note that many signals have both deterministic and stochastic components.

In some applications, it is very useful to treat these signals in the same

framework. One can do this by de�ning

�x = limN!1
1
N

PN
k=1 x(k)

Rx(�) = limN!1
1
N

PN
k=1[x(k)� �x][x(k � �)� �x]T

(5.6)

Note that in the above, both deterministic and stochastic parts are

averaged out. The signals for which the above limits converge are called

\quasi-stationary" signals. The above de�nitions are consistent with the

previous de�nitions since,in the purely stochastic case, a particular

realization of a stationary stochastic process with given mean (�x) and

covariance (Rx(�)) should satisfy the above relationships.

5.1.4 SPECTRA OF STATIONARY STOCHASTIC

PROCESSES

Throughout this chapter, continuous time is rescaled so that each discrete

time interval represents one continuous time unit. If the sample interval Ts
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is not one continuous time unit, the frequency in discrete time needs to be

scaled with the factor of 1
Ts
.

Spectral density of a stationary process x(k) is de�ned as the Fourier

transform of its covariance function:

�x(!) =
1

2�

1X
�=�1

Rx(�)e
�j�! (5.7)

Area under the curve represents the power of the signal for the particular

frequency range. For example, the power of x(k) in the frequency range

(!1; !2) is calculated by the integral

2 �
Z !=!2

!=!1
�x(!)d!

Peaks in the signal spectrum indicate the presence of periodic components

in the signal at the respective frequency.

The inverse Fourier transform can be used to calculate Rx(�) from the

spectrum �x(!) as well

Rx(�) =
Z �

��
�x(!)e

j�!d! (5.8)

With � = 0, the above becomes

Efx(k)x(k)Tg = Rx(0) =
Z �

��
�x(!)d! (5.9)

which indicates that the total area under the spectral density is equal to the

variance of the signal. This is known as the Parseval's relationship.

Example: Show plots of various covariances, spectra and realizations!

**Exercise: Plot the spectra of (1) white noise, (2) sinusoids, and (3)white

noise �ltered through a low-pass �lter.
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5.1.5 DISCRETE-TIME WHITE NOISE

A particular type of a stochastic process called white noise will be used

extensively throughout this book. x(k) is called a white noise (or white

sequence) if

P(x(k)jx(`)) = P(x(k)) for ` < k (5.10)

for all k. In other words, the sequence has no time correlation and hence all

the elements are mutually independent. In such a situation, knowing the

realization of x(`) in no way helps in estimating x(k).

A stationary white noise sequence has the following properties:

Efx(k)g = �x 8k

Ef(x(k)� �x)(x(k � �)� �x)Tg =

8><
>:
Rx if � = 0

0 if � 6= 0

(5.11)

Hence, the covariance of a white noise is de�ned by a single matrix.

The spectrum of white noise x(k) is constant for the entire frequency range

since from (5.7)

�x(!) =
1

2�
Rx (5.12)

The name \white noise" actually originated from its similarity with white

light in spectral properties.

5.1.6 COLORED NOISE

A stochastic process generated by �ltering white noise through a dynamic

system is called \colored noise."

Important:
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A stationary stochastic process with any given mean and

covariance function can be generated by passing a white noise

through an appropriate dynamical system.

To see this, consider

d(k) = H(q)"(k) + �d (5.13)

where "(k) is a white noise of identity covariance and H(q) is a stable /

stably invertible transfer function (matrix). Using simple algebra (Ljung

-REFERENCE), one can show that

�d(!) = H(ej!)HT (e�j!) (5.14)

The spectral factorization theorem (REFERENCE - �Astr�om and

Wittenmark, 1984) says that one can always �nd H(q) that satis�es (5.14)

for an arbitrary �d and has no pole or zero outside the unit disk. In other

words, the �rst and second order moments of any stationary signal can be

matched by the above model.

This result is very useful in modeling disturbances whose covariance

functions are known or �xed. Note that a stationary Gaussian process is

completely speci�ed by its mean and covariance. Such a process can be

modelled by �ltering a zero-mean Gaussian white sequence through

appropriate dynamics determined by its spectrum (plus adding a bias at the

output if the mean is not zero).
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5.1.7 INTEGRATED WHITE NOISE AND

NONSTATIONARY PROCESSES

Some processes exhibit mean-shifts (whose magnitude and occurence are

random). Consider the following model:

y(k) = y(k � 1) + "(k)

where "(k) is a white sequence. Such a sequence is called integrated white

noise or sometimes random walk. Particular realizations under di�erent

distribution of "(k) are shown below:

P(ζ )

���
90%

10%

y(k)

More generally, many interesting signals will exhibit stationary behavior

combined with randomly occuring mean-shifts. Such signals can be modeled

as
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~
( )H q 1−

1

1 q 1− − H q 1( )−

1

1 q 1− −

ε2(k )

ε1(k )

ε(k )

+ +

y(k)

y(k)

As shown above, the combined e�ects can be expressed as an integrated

white noise colored with a �lter H(q�1).

Note that while y(k) is nonstationary, the di�erenced signal �y(k) is

stationary.

y(k)
1

1 q 1− −

ε(k )
H q 1( )− H q 1( )−ε(k ) ∆y(k)

5.1.8 STOCHASTIC DIFFERENCE EQUATION

Generally, a stochastic process can be modeled through the following

stochastic di�erence equation.

x(k + 1) = Ax(k) +B"(k)

y(k) = Cx(k) +D"(k)
(5.15)

where "(k) is a white vector sequence of zero mean and covariance R".

Note that

Efx(k)g = AEfx(k � 1)g = AkEfx(0)g

Efx(k)xT(k)g = AEfx(k � 1)xT(k � 1)gAT + BR"B
T

(5.16)
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If all the eigenvalues of A are strictly inside the unit disk, the above

approaches a stationary process as k !1 since

limk!1Efx(k)g = 0

limk!1Efx(k)x
T(k)g = Rx

(5.17)

where Rx is a solution to the Lyapunov equation

Rx = ARxA
T +BR"B

T (5.18)

Since y(k) = Cx(k) +D"(k),

Efy(k)g = CEfx(k)g+DEf"(k)g = 0

Efy(k)yT (k)g = CEfx(k)xT(k)gCT +DEf"(k)"T (k)gDT = CRxC
T +DR"D

T

(5.19)

The auto-correlation function of y(k) becomes

Ry(�)
�= Efy(k + �)yT (k)g =

8><
>:
CRxC

T +DR"D
T for � = 0

CA�RxC
T + CA��1BR"D

T for � > 0
(5.20)

The spectrum of w is obtained by taking the Fourier transform of Ry(�))

and can be shown to be

�y(!) =
�
C(ej!I � A)�1B +D

�
R"

�
C(ej!I � A)�1B +D

�T
(5.21)

In the case that A contains eigenvalues on or outside the unit circle, the

process is nonstationary as its covariance keeps increasing (see Eqn. (5.16).

However, it is common to include integrators in A to model mean-shifting

(random-walk-like) behavior. If all the outputs exhibit this behavior, one

can use
x(k + 1) = Ax(k) +B"(k)

�y(k) = Cx(k) +D"(k)
(5.22)

Note that, with a stable A, while �y(k) is a stationary process, y(k)
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includes an integrator and therefore is nonstationary.

ε(κ) ε(κ)y(k) ∆y(k) y(k)

stable system stable system integrator

Stationary process Nonstationary(Meanshifting) process

x(k+1)=Ax(k)+B ε(k)
y(k)=Cx(k)+D ε(k)

x(k+1)=Ax(k)+B ε(k)
y(k)=Cx(k)+D ε(k)

1-q -1

1

5.2 STOCHASTIC SYSTEM MODELS

Models used for control will often include both deterministic and stochastic

inputs. The deterministic inputs correspond to known signals like

manipulated variables. The stochastic signals cover whatever remaining

parts that cannot be predicted a priori. They include the e�ect of

disturbances, other process variations and instrumentation errors.

5.2.1 STATE-SPACE MODEL

The following stochastic di�erence equation may be used to characterize a

stochastic disturbance:

x(k + 1) = Ax(k) +Bu(k) + "1(k)

y(k) = Cx(k) + "2(k)
(5.23)

"1(k) and "2(k) are white noise sequences that represent the e�ects of

disturbances, measurement error, etc. They may or may not be correlated.

� If the above model is derived from fundamental principles, "(k) may be

a signal used to generate physical disturbance states (which are
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included in the state x) or merely arti�cal signals added to represent

random errors in the state equation. "2(k) may be measurement noise

or signals representing errors in the output equations.

� If the model is derived on an empirical basis, "1(k) and "2(k) together

represent the combined e�ects of the process / measurement

randomness. In other words, the output is viewed as a composite of

two signals (y(k) = yd(k) + ys(k)), one of which is the output of the

deterministic system

x(k + 1) = Ax(k) + Bu(k)

yd(k) = Cx(k)
(5.24)

and the other is the random component

x(k + 1) = Ax(k) + "1(k)

ys(k) = Cx(k) + "2(k)
(5.25)

With such a model available, one problem treated in statistics is to predict

future states, (x(k + i); i � 0) given collected output measurements

(y(k); � � � ; y(1)). This is called state estimation and will be discussed in the

next chapter.

The other problem is building such a model. Given data

(y(i); u(i); i = 1; � � � ; N), the following two methods are available.

� One can use the so called subspace identi�cation methods.

� One can build a time series model or more generally a transfer function

model of the form

y(k) = G(q�1)u(k) +H(q�1)"(k)

Then, one can perform a state-space realization of the above to obtain

the state-space model.
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Details of these methods will be discussed in the identi�cation chapter.

For systems with (mean-shifting) nonstationary disturbances in all output

channels, it may be more convenient to express the model in terms of the

di�erenced inputs and outputs:

x(k + 1) = Ax(k) + B�u(k) + "1(k)

�y(k) = Cx(k) + "2(k)
(5.26)

If the undi�erenced y is desired as the output of the system, one can simply

rewrite the above as
2
64 x(k + 1)

y(k + 1)

3
75 =

2
64 A 0

CA I

3
75
2
64 x(k)
y(k)

3
75+

2
64 B

CB

3
75�u(k) +

2
64 I

C

3
75 "1(k) +

2
64 0

I

3
75 "2(k)

y(k) =
�
0 I

� 264 x(k)
y(k)

3
75

(5.27)
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Nonlinear ODE's
zf = f(z f,u f,w f)

y f = f(z f)

I/O Data
u(1), ,u(N)

y(1), ,y(N)

Physio-Chemical
Principles

I/D Experiment
Historical Data Base

x(k+1) = Ax(k) + Bu(k) + ε1(k)

y(k) = Cx(k) + ε2(k)

Linear Difference Eqns:

z(k+1)=Az(k)+B uu(k)+B ww(k)

y(k)=Cz(k)

Discrete Transfer Functions

y(k)=G(q -1,θ)u(k)+H(q -1,θ )e(k)

Augmentation Stochastic
States

z

w
x

Realization

Parameteric
ID(PEM)

Linearization
+

Discretization

S
ubspace  I D

5.2.2 INPUT-OUTPUT MODELS

One can also use input-output models. A general form is

y(k) = G(q)u(k) +H(q)"(k) (5.28)
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Within the above general structure, di�erent parameterizations exist. For

instance, a popular model is the following ARMAX (AR for

Auto-Regressive, MA for Moving-Average and X for eXtra input) process:

y(k) = (I + A1q
�1 + � � �+Anq

�n)�1(B1q
�1 + � � �+ Bmq

�m)u(k)

+(I + A1q
�1 + � � �+Anq

�n)�1(I + C1q
�1 + � � �+ Cnq

�n)"(k)

(5.29)

Note that the above is equivalent to the following linear time-series

equation:

y(k) = �A1y(k � 1)� A2y(k � 2)� � � � � Any(k � n)

+B1u(k � 1) + � � �+ Bmu(k �m)

+"(k) + C1"(k � 1) + � � �+ Cn"(k � n)

(5.30)

In most practical applications, matrices Ai's and Ci's are restricted to be

diagonal, which results in a MISO (rather than a MIMO) structure. In such

a case, stochastic components for di�erent output channels are restricted to

be mutually independent.

For systems with integrating type disturbances in all output channels, a

more appropriate model form is

y(k) = G(q)u(k) +
1

1� q�1
H(q)"(k) (5.31)

The above can be easily rewritten as

�y(k) = G(q)�u(k) +H(q)"(k) (5.32)
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